A microscopic model of fluid flow in porous media
A model to describe microscopic fluid flow in porous media is proposed. It offers the potential to predict relative permeability curves from microscopic rock and fluid properties. Conventional descriptions of fluid flow in porous media are based on Darcy's equations which require relative permeabilities and capillary pressure curves to be measured on macroscopic porous material. Prior to 1980, these macroscopically measured parameters could not be quantitatively related to microscopic rock properties. Recently, percolation theory has been used to relate macroscopic rock properties to relative permeabilities in the limit of capillary flow. Diffusion Limited Aggregation has been shown to simulate microscopic flow in the limit of infinite mobility ratios. The model described in this paper is a new approach to simulating flow through porous media on a microscopic scale. It is based on a variation of diffusion limited aggregation. The model can match coreflood average saturation profiles and production histories as predicted by Darcy's equations while generating saturation distributions resembling viscous fingering. The model can also simulate the limiting cases of infinite mobility ratio and zero flow rates as previously modeled by diffusion limited aggregation and percolation theory. With some simplifying assumptions, differential equations very similar to Darcy's equations can be derived from the microscopic interpretation of fluid behavior in porous media used in this model.
- Research Organization:
- Conoco Inc.
- OSTI ID:
- 6975432
- Report Number(s):
- CONF-861080-
- Country of Publication:
- United States
- Language:
- English
Similar Records
Momentum transfer across fluid-fluid interfaces in porous media: A network model
Mechanism of oil bank formation, coalescence in porous media and emulsion and foam stability. Quarterly research progress report, July 1, 1984-September 30, 1984
Related Subjects
020200* -- Petroleum-- Reserves
Geology
& Exploration
DARCY LAW
DIFFERENTIAL EQUATIONS
DIFFUSION
EQUATIONS
FLOW MODELS
FLUID FLOW
FLUID MECHANICS
FORECASTING
GEOLOGIC DEPOSITS
HYDRODYNAMICS
MATERIALS
MATHEMATICAL MODELS
MECHANICS
MINERAL RESOURCES
PERMEABILITY
PETROLEUM DEPOSITS
POROSITY
POROUS MATERIALS
RESERVOIR ROCK
RESOURCES
SATURATION
SIMULATION
VISCOSITY