skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease

Abstract

Twenty-seven patients with angina pectoris, 24 with postmyocardial infarction angina and 7 with normal coronary arteries were examined by exercise thallium-201 emission computed tomography (SPECT) and planar scintigraphy. Exercise SPECT was compared with the reperfusion imaging obtained approximately 2 to 3 hours after exercise. The sensitivity and specificity of demonstrating involved coronary arteries by identifying the locations of myocardial perfusion defects were 96 and 87% for right coronary artery, 88 and 89% for left anterior descending artery (LAD) and 78 and 100% for left circumflex artery (LC). These figures are higher than those for planar scintigraphy (85 and 87% for right coronary artery, 73 and 89% for LAD and 39 and 100% for LC arteries). In patients with 3-vessel disease, sensitivity of SPECT (100, 88 and 75% for right coronary artery, LAD and LC, respectively) was higher than planar imaging (88, 63 and 31%, respectively), with a significant difference for LC (p less than 0.05). In 1, 2 and 0-vessel disease the sensitivity and specificity of the 2 techniques were comparable. Multivessel disease was more easily identified as multiple coronary involvement than planar imaging with a significant difference in 3-vessel disease (p less than 0.05). In conclusion, stress SPECT providesmore » useful information for the identification of LC lesions in coronary heart disease, including 3-vessel involvement.« less

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Department of Internal Medicine, Faculty of Medicine, Kyoto University, Japan
OSTI Identifier:
6975037
Resource Type:
Journal Article
Resource Relation:
Journal Name: Am. J. Cardiol.; (United States); Journal Volume: 53:9
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; CORONARIES; SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY; DIAGNOSTIC TECHNIQUES; EXERCISE; MYOCARDIAL INFARCTION; PATIENTS; THALLIUM ISOTOPES; ARTERIES; BLOOD VESSELS; BODY; CARDIOVASCULAR DISEASES; CARDIOVASCULAR SYSTEM; COMPUTERIZED TOMOGRAPHY; DISEASES; EMISSION COMPUTED TOMOGRAPHY; ISOTOPES; ORGANS; TOMOGRAPHY; 550601* - Medicine- Unsealed Radionuclides in Diagnostics

Citation Formats

Nohara, R., Kambara, H., Suzuki, Y., Tamaki, S., Kadota, K., Kawai, C., Tamaki, N., and Torizuka, K.. Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease. United States: N. p., 1984. Web. doi:10.1016/0002-9149(84)90073-0.
Nohara, R., Kambara, H., Suzuki, Y., Tamaki, S., Kadota, K., Kawai, C., Tamaki, N., & Torizuka, K.. Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease. United States. doi:10.1016/0002-9149(84)90073-0.
Nohara, R., Kambara, H., Suzuki, Y., Tamaki, S., Kadota, K., Kawai, C., Tamaki, N., and Torizuka, K.. 1984. "Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease". United States. doi:10.1016/0002-9149(84)90073-0.
@article{osti_6975037,
title = {Stress scintigraphy using single-photon emission computed tomography in the evaluation of coronary artery disease},
author = {Nohara, R. and Kambara, H. and Suzuki, Y. and Tamaki, S. and Kadota, K. and Kawai, C. and Tamaki, N. and Torizuka, K.},
abstractNote = {Twenty-seven patients with angina pectoris, 24 with postmyocardial infarction angina and 7 with normal coronary arteries were examined by exercise thallium-201 emission computed tomography (SPECT) and planar scintigraphy. Exercise SPECT was compared with the reperfusion imaging obtained approximately 2 to 3 hours after exercise. The sensitivity and specificity of demonstrating involved coronary arteries by identifying the locations of myocardial perfusion defects were 96 and 87% for right coronary artery, 88 and 89% for left anterior descending artery (LAD) and 78 and 100% for left circumflex artery (LC). These figures are higher than those for planar scintigraphy (85 and 87% for right coronary artery, 73 and 89% for LAD and 39 and 100% for LC arteries). In patients with 3-vessel disease, sensitivity of SPECT (100, 88 and 75% for right coronary artery, LAD and LC, respectively) was higher than planar imaging (88, 63 and 31%, respectively), with a significant difference for LC (p less than 0.05). In 1, 2 and 0-vessel disease the sensitivity and specificity of the 2 techniques were comparable. Multivessel disease was more easily identified as multiple coronary involvement than planar imaging with a significant difference in 3-vessel disease (p less than 0.05). In conclusion, stress SPECT provides useful information for the identification of LC lesions in coronary heart disease, including 3-vessel involvement.},
doi = {10.1016/0002-9149(84)90073-0},
journal = {Am. J. Cardiol.; (United States)},
number = ,
volume = 53:9,
place = {United States},
year = 1984,
month = 5
}
  • Thallium-201 myocardial imaging during dipyridamole-induced coronary hyperemia has been an accepted method for diagnosing coronary artery disease (CAD) and risk stratification. Adenosine is a powerful short-acting coronary vasodilator. Initial results of thallium imaging during adenosine infusion have been encouraging. In 132 patients with CAD and in 16 patients with normal coronary angiograms, adenosine was given intravenously at a dose of 0.14 mg/kg/min for 6 minutes and thallium-201 was injected at 3 minutes. The thallium images using single-photon emission computed tomography were abnormal in 47 of the 54 patients (87%) with 1-vessel, in 34 of 37 patients (92%) with 2-vessel andmore » in 40 of 41 patients (98%) with 3-vessel CAD. The sensitivity was 92% in the 132 patients with CAD (95% confidence intervals, 86 to 96%). In patients with normal coronary angiograms, 14 of 16 patients had normal thallium images (specificity, 88%; 95% confidence intervals, 59 to 100%). The results were very similar when subgroups of patients were analyzed: those without prior myocardial infarction, elderly patients and women. The nature of the perfusion defects (fixed or reversible) was assessed in relation to whether the 4-hour delayed images were obtained with or without the reinjection technique. In patients who underwent conventional delayed imaging, there were more fixed perfusion defects than in patients with reinjection delayed imaging (16 vs 0%, p less than 0.0001). The adverse effects were mild, transient and well tolerated. Thus, adenosine thallium tomographic imaging provides a high degree of accuracy in the diagnosis of CAD. The use of the reinjection technique enhances the ability to detect reversible defects.« less
  • The diagnostic value of maximal pharmacologic coronary vasodilation with intravenously administered adenosine in conjunction with thallium-201 single-photon emission computed tomography (SPECT) for detection of coronary artery disease was investigated in 101 consecutive patients who had concomitant coronary arteriography. Tomographic images were assessed visually and from computer-quantified polar maps of the thallium-201 distribution. Significant coronary artery disease, defined as greater than 50% luminal diameter stenosis, was present in 70 patients. The sensitivity for detecting patients with coronary artery disease using quantitative analysis was 87% in the total group, 82% in patients without myocardial infarction and 96% in those with prior myocardialmore » infarction; the specificity was 90%. The sensitivity for diagnosing coronary artery disease in patients without infarction with single-, double-and triple-vessel disease was 76%, 86% and 90%, respectively. All individual stenoses were identified in 68% of patients with double-vessel disease and in 65% of those with triple-vessel disease. The extent of the perfusion defects, as quantified by polar maps, was directly related to the extent of coronary artery disease. In conclusion, quantitative thallium-201 SPECT during adenosine infusion has high sensitivity and specificity for diagnosing the presence of coronary artery disease, localizing the anatomic site of coronary stenosis and identifying the majority of affected vascular regions in patients with multivessel involvement.« less
  • To assess the extent of jeopardized myocardium in patients with single vessel coronary artery disease of variable severity and location, quantitative exercise thallium-201 single photon emission computed tomography was performed in 158 consecutive patients with angiographically proved single vessel coronary artery disease. The extent of abnormal left ventricular perfusion was quantified from computer-generated polar maps of three-dimensional myocardial radioactivity. Patients with only a moderate (51% to 69%) stenosis tended to have a small perfusion defect irrespective of the coronary artery involved. Whereas a perfusion defect measuring greater than or equal to 10% of the left ventricle was found in 78%more » of patients with no prior infarction and severe (greater than or equal to 70%) stenosis, this was observed in only 24% of patients with moderate stenosis. Perfusion defect size increased with increasing severity of stenosis for the entire group without infarction and for those with left anterior descending, right and circumflex coronary artery stenosis. However, the correlation between stenosis severity and perfusion defect size was at best only modest (r = 0.38, p = 0.0001). The left anterior descending artery was shown to be the most important of the three coronary arteries for providing left ventricular perfusion. Proximal stenosis of this artery produced a perfusion defect approximately twice as large as that found in patients with a proximal right or circumflex artery stenosis. However, marked heterogeneity in perfusion defect size existed among all three vessels despite comparable stenosis severity. This was most apparent for the left anterior descending coronary artery, where mid vessel stenosis commonly produced a perfusion defect similar in size to that found in proximally stenosed vessels.« less
  • One hundred eight-three men underwent stress-redistribution thallium-201 myocardial perfusion tomography. After evaluation of various preprocessing filters in a phantom study, the Butterworth filter with a frequency cutoff of 0.2 cycles/pixel, order 5 (which provided optimal filter power) was used in the back projection algorithm of the patient studies. All short-axis and apical portions of vertical long-axis images were quantified by dividing each myocardial slice into 60 equal sectors and displaying the maximal count per sector as a linear profile. In a pilot group consisting of 20 normal men (less than 5% likelihood of coronary artery disease) and 25 men withmore » coronary artery disease (greater than or equal to 50% coronary stenosis by angiography), profiles representing the lowest observed value below the mean normal profiles provided the best threshold for defining normal limits. Abnormal portions of the patient profiles were plotted on a two-dimensional polar map. The polar map was divided into 102 sectors, and sectors with a probability of greater than or equal to 80% for disease of each one of the three major coronary arteries were clustered to represent specific coronary artery territories. Receiver operating characteristic curve analysis for defect size showed that the optimal threshold for defining a definite perfusion defect was 12% for the left anterior descending and left circumflex and 8% for the right coronary artery territories. These criteria were prospectively applied to an additional 92 patients with angiographic coronary artery disease, 18 patients with normal coronary arteriograms and 28 patients with less than 5% likelihood of coronary disease. Sensitivity, specificity and normalcy rate for overall detection of coronary disease were 96%, 56% and 86%, respectively.« less
  • Single-photon emission computed tomography (SPECT) using thallium-201 (Tl-201) was compared with technetium-99m hexakis 2-methoxyisobutyl isonitrile (Tc-99m MIBI) in 24 patients with coronary artery diseaes. Patients exercised to the same work load as each isotope was studied. Normal and hypoperfused left ventricular mass was determined with an automated method. Estimated total left ventricular mass was similar for both stress/redistribution Tl-201 and stress/rest Tc-99m MIBI images. The mean estimated defect size in the redistribution Tl-201 images was 32 +/- 34.7 vs 33 +/- 38.4 g in the resting Tc-99m MIBI studies (difference not significant). The individual determinations of defect mass were highlymore » correlated (r = 0.93; p less than 0.0001). Estimated defect size in the stress Tl-201 images (52 +/- 46.2 g) was significantly larger than the exercise Tc-99m MIBI estimates of defect mass (42 +/- 39.9 g; p less than 0.05). A linear correlation existed between stress thallium and technetium estimates of defect size (r = 0.85) but 15 of 24 Tc-99m MIBI defects were smaller than the Tl-201 defects. Partial redistribution of Tc-99m MIBI could explain the discordance. Stress Tc-99m MIBI SPECT defect size determined by visual interpretation or by the use of isocount analysis may be smaller than what is seen with stress Tl-201 SPECT.« less