skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region

Abstract

A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groupsmore » tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.« less

Authors:
; ; ; ; ; ; ; ;  [1];  [2]
  1. (Univ. of Washington, Seattle, WA (United States))
  2. (and others)
Publication Date:
OSTI Identifier:
6974799
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; (United States); Journal Volume: 51:5
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; CENTRAL NERVOUS SYSTEM; GENE MUTATIONS; HEREDITARY DISEASES; HUMAN CHROMOSOME 21; GENETIC MAPPING; HUMAN POPULATIONS; CHROMOSOMES; DISEASES; HUMAN CHROMOSOMES; MAPPING; MUTATIONS; NERVOUS SYSTEM; POPULATIONS 550400* -- Genetics

Citation Formats

Kamino, K., Anderson, L., O'dahl, S., Nemens, E., Bird, T.D., Schellenberg, G.D., Wijsman, E.M., Kukall, W., Larson, E., and Heston, L.L. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. United States: N. p., 1992. Web.
Kamino, K., Anderson, L., O'dahl, S., Nemens, E., Bird, T.D., Schellenberg, G.D., Wijsman, E.M., Kukall, W., Larson, E., & Heston, L.L. Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region. United States.
Kamino, K., Anderson, L., O'dahl, S., Nemens, E., Bird, T.D., Schellenberg, G.D., Wijsman, E.M., Kukall, W., Larson, E., and Heston, L.L. 1992. "Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region". United States. doi:.
@article{osti_6974799,
title = {Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region},
author = {Kamino, K. and Anderson, L. and O'dahl, S. and Nemens, E. and Bird, T.D. and Schellenberg, G.D. and Wijsman, E.M. and Kukall, W. and Larson, E. and Heston, L.L.},
abstractNote = {A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the APP gene. A combination of direct sequencing and single-strand conformational polymorphism analysis was used. Sporadic AD and normal controls were also examined by the same methods. Five sequence variants were identified. One variant at APP codon 693 resulted in a Glu[yields]Gly change. This is the same codon as the hereditary cerebral hemorrhage with amyloidosis-Dutch type Glu[yields]Gln mutation. Another single-base change at APP codon 708 did not alter the amino acid encoded at this site. Two point mutations and a 6-bp deletion were identified in the intronic sequences surrounding exon 17. None of the variants could be unambigously determined to be responsible for FAD. The larger families were also analyzed by testing for linkage of FAD to a highly polymorphic short tandem repeat marker (D21S210) that is tightly linked to APP. Highly negative LOD scores were obtained for the family groups tested, and linkage was formally excluded beyond [theta] = .10 for the Volga German kindreds, [theta] = .20 for early-onset non-Volga Germans, and [theta] = .10 for late-onset families. LOD scores for linkage of FAD to markers centromeric to APP (D21S1/S11, D21S13, and D21S215) were also negative in the three family groups. These studies show that APP mutations account for AD in only a small fraction of FAD kindreds. 49 refs., 6 figs., 4 tabs.},
doi = {},
journal = {American Journal of Human Genetics; (United States)},
number = ,
volume = 51:5,
place = {United States},
year = 1992,
month =
}
  • Genetic studies of kindreds displaying evidence for familial AD (FAD) have led to the localization of gene defects responsible for this disorder on chromosomes 14, 19, and 21. A minor early-onset FAD gene on chromosome 21 has been identified to enode the amyloid precursor protein (APP), and the late-onset FAD susceptibility locus on chromosome 19 has been shown to be in linkage disequilibrium with the E4 allele of the APOE gene. Meanwhile, the locus responsible for the major form of early-onset FAD on chromosome 14q24 has not yet been identified. By recombinational analysis, we have refined the minimal candidate regionmore » containing the gene defect to approximately 3 megabases in 14q24. We will describe our laboratory`s progress on attempts to finely localize this locus, as well as test known candidate genes from this region for either inclusion in the minimal candidate region or the presence of pathogenic mutations. Candidate genes that have been tested so far include cFOS, heat shock protein 70 member (HSF2A), transforming growth factor beta (TGFB3), the trifunctional protein C1-THF synthase (MTHFD), bradykinin receptor (BR), and the E2k component of a-ketoglutarate dehydrogenase. HSP2A, E2k, MTHFD, and BR do not map to the current defined minimal candidate region; however, sequence analysis must be performed to confirm exclusion of these genes as true candidates. Meanwhile, no pathogenic mutations have yet been found in cFOS or TGFB3. We have also isolated a large number of novel transcribed sequences from the minimal candidate region in the form of {open_quotes}trapped exons{close_quotes} from cosmids identified by hybridization to select YAC clones; we are currently in the process of searching for pathogenic mutations in these exons in affected individuals from FAD families.« less
  • Linkage of Alzheimer disease (AD) to DNA markers on chromosomes 14, 19, and 21 was studied in 10 families in which the disease was apparently inherited as an autosomal dominant trait. Families were derived from a Dutch population-based epidemiologic study of early-onset AD. Although in all probands the onset of AD was at or before age 65 years, the mean age at onset was after age 65 years in four families (referred to as {open_quotes}LOAD{close_quotes}). Among the six families with early-onset AD (referred to as {open_quotes}EOAD,{close_quotes} i.e., mean age of onset of AD of relatives was at or before agemore » 65 years), conclusive linkage to 14q24.3 was found in one family with a very early onset (around 47 years), while linkage to the same region was excluded in two other families. For the LOAD families, predominantly negative lod scores were obtained, and the overall lod score excluded linkage to chromosome 14. The results with markers on chromosome 19 and chromosome 21 were not conclusive for EOAD and LOAD. The findings of our study confirm genetic heterogeneity within familial EOAD. 50 refs., 7 figs., 2 tabs.« less
  • Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologicmore » findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.« less
  • Mutations in the gene STM2 result in autosomal dominant familial Alzheimer disease. To screen for mutations and to identify regulatory elements for this gene, the genomic DNA sequence and intron-exon structure were determined. Twelve exons including 10 coding exons were identified in a genomic region spanning 23, 737 bp. The first 2 exons encode the 5{prime}-untranslated region. Expression analysis of STM2 indicates that two transcripts of 2.4 and 2.8 kb are found in skeletal muscle, pancreas, and heart. In addition, a splice variant of the 2.4-kb transcript was identified that is the result of the use of an alternative splicemore » acceptor site located in exon 10. The use of this site results in a transcript lacking a single glutamate. The promotor for this gene and the alternatively spliced exons leading to the 2.8-kb form of the gene remain to be identified. Expression of STM2 was high in skeletal muscle and pancreas, with comparatively low levels observed in brain. This expression pattern is intriguing since in Alzheimer disease, pathology and degeneration are observed only in the central nervous system. 19 refs., 2 figs., 3 tabs.« less
  • A cDNA encoding the rat endopeptidase 24.15 was used to determine the chromosomal localization of the respective human gene. Hybridization to DNA from human-rodent somatic cell hybrids assigned the human gene to chromosome 19. Fluorescence in situ hybridization on human metaphase chromosomes localized the human endopeptidase 24.15 to 19q13.3. 27 refs., 1 fig., 1 tab.