skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells

Abstract

1,4-Benzoquinone is cytotoxic in V79 Chinese hamster cells and induces gene mutations and micronuclei. The cell-damaging effects of quinones are usually attributed to thiol depletion, oxidation of NAD(P)H, and redox-cycling involving the formation of semiquinone radicals and reactive oxygen species. To elucidate the role of these mechanisms in the genotoxicity of 1,4-benzoquinone, the authors measured various genotoxic effects, cytotoxicity, and the levels of glutathione, NADPH, NADH, and their oxidized forms all in the same experiment. 1,4-Naphthoquinone, which does not induce gene mutations in V79 cells, was investigated for comparative reasons. The quinones had a similar effect on the levels of cofactors. Total glutathione was depleted, but levels of oxidized glutathione were slightly increased. The levels of NADPH and NADH were reduced at high concentrations of the quinones with a simultaneous increase in the levels of NADP{sup +} and NAD{sup +}. Both compounds induced micronuclei, but neither increased the frequency of sister chromatid exchange. Only 1,4-benzoquinone induced gene mutations. They conclude that (a) induction of micronuclei and glutathione depletion by the two quinones are not linked casually, (b) 1,4-benzoquinone induces gene mutations by a mechanism different from oxidative stress and glutathione depletion, and (c) glutathione does not fully protect the cellsmore » against the genotoxicity of quinones.« less

Authors:
; ;  [1]
  1. (Univ. of Mainz (West Germany))
Publication Date:
OSTI Identifier:
6967846
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Health Perspectives; (USA); Journal Volume: 82
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; BENZENE; METABOLITES; GLUTATHIONE; BIOCHEMISTRY; NADP; QUINONES; TOXICITY; FIBROBLASTS; GENE MUTATIONS; HAMSTERS; RADICALS; SISTER CHROMATID EXCHANGES; ANIMAL CELLS; ANIMALS; AROMATICS; CHEMISTRY; CHROMOSOMAL ABERRATIONS; COENZYMES; CONNECTIVE TISSUE CELLS; DRUGS; HYDROCARBONS; MAMMALS; MUTATIONS; NUCLEOTIDES; ORGANIC COMPOUNDS; ORGANIC OXYGEN COMPOUNDS; PEPTIDES; POLYPEPTIDES; PROTEINS; RADIOPROTECTIVE SUBSTANCES; RODENTS; SOMATIC CELLS; VERTEBRATES; 560300* - Chemicals Metabolism & Toxicology

Citation Formats

Ludewig, G., Dogra, S., and Glatt, H. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. United States: N. p., 1989. Web. doi:10.1289/ehp.8982223.
Ludewig, G., Dogra, S., & Glatt, H. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells. United States. doi:10.1289/ehp.8982223.
Ludewig, G., Dogra, S., and Glatt, H. Sat . "Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells". United States. doi:10.1289/ehp.8982223.
@article{osti_6967846,
title = {Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells},
author = {Ludewig, G. and Dogra, S. and Glatt, H.},
abstractNote = {1,4-Benzoquinone is cytotoxic in V79 Chinese hamster cells and induces gene mutations and micronuclei. The cell-damaging effects of quinones are usually attributed to thiol depletion, oxidation of NAD(P)H, and redox-cycling involving the formation of semiquinone radicals and reactive oxygen species. To elucidate the role of these mechanisms in the genotoxicity of 1,4-benzoquinone, the authors measured various genotoxic effects, cytotoxicity, and the levels of glutathione, NADPH, NADH, and their oxidized forms all in the same experiment. 1,4-Naphthoquinone, which does not induce gene mutations in V79 cells, was investigated for comparative reasons. The quinones had a similar effect on the levels of cofactors. Total glutathione was depleted, but levels of oxidized glutathione were slightly increased. The levels of NADPH and NADH were reduced at high concentrations of the quinones with a simultaneous increase in the levels of NADP{sup +} and NAD{sup +}. Both compounds induced micronuclei, but neither increased the frequency of sister chromatid exchange. Only 1,4-benzoquinone induced gene mutations. They conclude that (a) induction of micronuclei and glutathione depletion by the two quinones are not linked casually, (b) 1,4-benzoquinone induces gene mutations by a mechanism different from oxidative stress and glutathione depletion, and (c) glutathione does not fully protect the cells against the genotoxicity of quinones.},
doi = {10.1289/ehp.8982223},
journal = {Environmental Health Perspectives; (USA)},
number = ,
volume = 82,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 1989},
month = {Sat Jul 01 00:00:00 EDT 1989}
}
  • The oxidation of various quinones by H{sub 2}O{sub 2} results in quinone epoxide formation. The yield of epoxidation is inversely related to the degree of methyl substitution of the quinone and seems not to be dependent on the redox potential of the quinones studied. The following order of H{sub 2}O{sub 2}-mediated epoxidation of quinones was found: p-benzoquinone greater than or equal to 1,4-naphthoquinone greater than 2-methyl-p-benzoquinone greater than 2,6-dimethyl-p-benzoquinone greater than or equal to 2-methyl-1,4-naphthoquinone greater than 2,3-dimethyl-1,4-naphthoquinone. DT-Diaphorase reduces several quinone epoxides at different rates. The rate of quinone epoxide reduction cannot be related to either the redox potentialmore » of the quinone epoxide (as reflected by the half-wave potential calculated from the corresponding hydrodynamic voltamograms) or the degree of substitution of the quinone epoxide. It appears, however, that a quinone epoxide redox potential more negative than -0.5 to -0.6 volts settles a threshold for the electron transfer reaction. This does not exclude that specificity requirements, i.e. the formation of the quinone epoxide substrate-enzyme complex may chiefly determine the rate of reduction of quinone epoxides by DT-diaphorase. DT-diaphorase-catalyzed two-electron transfer to quinone epoxides--resulting in epoxide ring opening--yields 2-OH-p-benzohydroquinone or 2-OH-1,4-naphthohydroquinone products. These hydroxy-derivatives show a higher rate of autoxidation than do the parent hydroquinones lacking the OH substituent.« less
  • This series of experiments employed the hypoxic cell sensitizer SR 2508 in concentrations ranging from 0.1 to 10 mM and V-79 cells irradiated in air or made hypoxic in glass syringes, then irradiated with 15 MV X rays. Using a series of survival curves measured at the various concentrations, K curves relating sensitizer enhancement ratio (SER) to SR 2508 concentration were calculated with normal GSH levels or with depletion of GSH to 0% using 1 mM buthionine sulfoximine (BSO) or elevation to 200% of normal using 1 mM oxothiazolidine carboxylate (OTZ). Survival curves were fitted by computer, allowing calculation ofmore » standard errors for the SER values. The depletion of GSH by BSO sensitized hypoxic and aerated cells significantly and caused more than additive enhancement of SR 2508 sensitization in hypoxic cells. Elevation of GSH with OTZ protects cells irradiated in air or hypoxia and reduces the SER obtained with SR 2508. The results further support the importance of GSH levels in influencing sensitization by nitroimidazoles.« less
  • Highlights: {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced VSMC proliferation in a dose-dependent manner with no apparent cytotoxicity. {yields} 2-Decylamino-DMNQ inhibited PDGF-BB-induced phosphorylation of Erk1/2 and PLC{gamma}1. {yields} 2-Decylamino-DMNQ arrested a G{sub 0}/G{sub 1} cell cycle progression in association with pRb phosphorylation and PCNA expression. {yields} Both U0126, an Erk inhibitor, and U73122, a PLC{gamma} inhibitor, arrested a G{sub 0}/G{sub 1} phase of the cell cycle. -- Abstract: Naphthoquinone derivatives have been reported to possess various pharmacological activities, such as antiplatelet, anticancer, antifungal, and antiviral properties. In this study, we investigated the effects of a newly-synthesized naphthoquinone derivative, 2-decylamino-5,8-dimethoxy-1,4-naphthoquinone (2-decylamino-DMNQ), on VSMC proliferationmore » and examined the molecular basis of the underlying mechanism. In a dose-dependent manner, 2-decylamino-DMNQ inhibited PDGF-stimulated VSMC proliferation with no apparent cytotoxic effect. While 2-decylamino-DMNQ did not affect PDGF-R{beta} or Akt, it did inhibit the phosphorylation of Erk1/2 and PLC{gamma}1 induced by PDGF. Moreover, 2-decylamino-DMNQ suppressed DNA synthesis through the arrest of cell cycle progression at the G{sub 0}/G{sub 1} phase, including the suppression of pRb phosphorylation and a decrease in PCNA expression, which was related to the downregulation of cell cycle regulatory factors, such as cyclin D1/E and CDK 2/4. It was demonstrated that both U0126, an Erk1/2 inhibitor, and U73122, a PLC{gamma} inhibitor, increased the proportion of cells in the G{sub 0}/G{sub 1} phase of the cell cycle. Thus, these results suggest that 2-decylamino DMNQ has an inhibitory effect on PDGF-induced VSMC proliferation and the mechanism of this action is through cell cycle arrest at the G{sub 0}/G{sub 1} phase. This may be a useful tool for studying interventions for vascular restenosis in coronary revascularization procedures and stent implantation.« less
  • The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16more » and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with {sup 14}C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism. - Highlights: • Ascorbate potentiates the inhibition caused by juglone and Q7on tumor progress in vivo. • Juglone and Q7 with ascorbate caused widespread oxidative stress in tumor tissue. • Treatments inhibited HIF-1 and GLUT1 expression causing reduced glucose uptake. • Treatments induced cell cycle arrest and apoptosis in tumor in vivo.« less
  • The role of glutathione (GSH) and total non-protein thiols (NPSH) in repairing radiation-induced free radical damage incurred under aerated and hypoxic conditions was investigated using Chinese hamster V79 cells cultured in vitro. GSH and NPSH levels were depleted in V79 cells of varying cell densities using the gamma-glutamyl-cysteine-synthetase inhibitor, D,L-Buthionine-S,R-sulfoximine (BSO). A small change in hypoxic cell radiosensitivity could be attributed to the loss of GSH while depletion of thiols to lower levels affected both aerated and hypoxic cell radiosensitivity, resulting in no change in the OER.