Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Integrated characterization of carbonate ramp reservoirs using Permian San Andres Formation outcrop analogs

Journal Article · · AAPG Bulletin (American Association of Petroleum Geologists); (United States)
OSTI ID:6966176
; ;  [1]
  1. Univ. of Texas, Austin, TX (United States)
The San Andres Formation (Permian, Guadalupian) of the Permian basin is representative of carbonate ramp reservoirs in that it has highly stratified character, complex facies and permeability structure, and generally low recovery efficiencies of 30% of original oil in place. The approach used here to describe carbonate ramp reservoirs such as the San Andres Formation produces detailed reservoir models based on integration of sequence stratigraphic analysis, petrophysical quantification through definition of rock fabric flow units, and fluid flow simulation. Synthesis of these subdisciplines clarifies which aspects of the geologic-petrophysical model are most significant in predicting reservoir performance and ultimately in understanding the location of remaining oil saturation. On the basis of sequence stratigraphic analysis, three scales of cyclicity are recognized: depositional sequences, high-frequency sequences, and cycles. Two-dimensional black oil fluid flow models illustrate that (1) major differences in sweep efficiency and fluid flow performance are predicted when linear interwell interpolations are compared with actual interwell-scale geologic structure as determined by outcrop geologic and petrophysical mapping, (2) an understanding of static geologic/petrophysical conditions provides only a partial understanding of reservoir performance defined by the interaction of these static properties and dynamic properties of fluid flow interaction within the flow unit architecture, and (3) because of the orderly distribution of high- and low-permeability facies within cycle stacks of high-frequency sequences, this larger scale of geologic description can give a reasonable first-order approximation of fluid flow patterns and early breakthrough. 87 refs., 33 figs., 1 tab.
OSTI ID:
6966176
Journal Information:
AAPG Bulletin (American Association of Petroleum Geologists); (United States), Journal Name: AAPG Bulletin (American Association of Petroleum Geologists); (United States) Vol. 78:2; ISSN 0149-1423; ISSN AABUD2
Country of Publication:
United States
Language:
English