Laplace transforms of Heisenberg operators in finite-dimensional spaces
Journal Article
·
· Sov. J. Nucl. Phys. (Engl. Transl.); (United States)
OSTI ID:6946085
The integral X (lambda) =..integral../sup infinity//sub 0/ dt exp(-(lambda-iF) t)X exp(-iHt) and the solution to the matrix equation (lambda-iF) X (lambda)+iX (lambda) H=X, where F and H are Hermitian matrices of dimensionality M and N, respectively, are written as polynomials of order N-1 in H and M-1 in F. The coefficients are determined from the characteristic polynomials of the matrices F and H.
- Research Organization:
- Institute of Theoretical and Experimental Physics, State Commission on Use of Atomic Energy
- OSTI ID:
- 6946085
- Journal Information:
- Sov. J. Nucl. Phys. (Engl. Transl.); (United States), Journal Name: Sov. J. Nucl. Phys. (Engl. Transl.); (United States) Vol. 25:5; ISSN SJNCA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Conservative systems of integral convolution equations on the half-line and the entire line
Asymptotic evaluation of two families of integrals
Some properties of the log-Laplace distribution
Journal Article
·
Sun Jun 30 00:00:00 EDT 2002
· Sbornik. Mathematics
·
OSTI ID:21205692
Asymptotic evaluation of two families of integrals
Journal Article
·
Fri Jul 01 00:00:00 EDT 1977
· J. Math. Anal. Appl.; (United States)
·
OSTI ID:7211642
Some properties of the log-Laplace distribution
Conference
·
Mon Dec 31 23:00:00 EST 1979
·
OSTI ID:5211109
Related Subjects
657002* -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
FUNCTIONS
HEISENBERG PICTURE
HERMITIAN MATRIX
INTEGRAL TRANSFORMATIONS
LAPLACE TRANSFORMATION
MATHEMATICAL OPERATORS
MATRICES
POLYNOMIALS
QUANTUM OPERATORS
TRANSFORMATIONS
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
FUNCTIONS
HEISENBERG PICTURE
HERMITIAN MATRIX
INTEGRAL TRANSFORMATIONS
LAPLACE TRANSFORMATION
MATHEMATICAL OPERATORS
MATRICES
POLYNOMIALS
QUANTUM OPERATORS
TRANSFORMATIONS