Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A centrifugal-sudden distorted wave study of the Cl+HCl r arrow ClH+Cl reaction using a tight-bend'' potential energy surface

Journal Article · · Journal of Chemical Physics; (USA)
DOI:https://doi.org/10.1063/1.457706· OSTI ID:6945505
 [1]; ;  [2]
  1. Theoretical Chemistry Group, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439 (USA)
  2. Department of Chemistry, University of Manchester, Manchester, M13 9PL, United Kingdom (GB)

Quantum calculations of product rotational distributions, cross sections and rate coefficients have been performed for the Cl+HCl{r arrow}ClH+Cl reaction using the centrifugal-sudden distorted-wave (CSDW) technique. The CSDW method has been shown to be nearly exact at low total energies where the total reaction probability for each partial wave is small. The potential energy surface used is the extended London--Eyring--Polanyi--Sato surface No. 3 of Persky and Kornweitz. This surface has a tighter bending potential near the saddle point than many of the other commonly used Cl+HCl potentials. This difference in bending potential is found to have a profound influence on the product rotational distributions, producing much colder HCl molecules than is the case for the other potentials. In contrast, quantities such as rate coefficients and cumulative reaction probabilities are found to be only weakly sensitive to the strength of the bending potential. Comparison with quasiclassical trajectory results shows reasonable agreement with respect to the shape of the rotational distributions, but the magnitudes of the cross sections and rate coefficients are substantially different.

Research Organization:
Argonne National Laboratory (ANL), Argonne, IL
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
6945505
Journal Information:
Journal of Chemical Physics; (USA), Journal Name: Journal of Chemical Physics; (USA) Vol. 92:8; ISSN JCPSA; ISSN 0021-9606
Country of Publication:
United States
Language:
English