skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mammalian. beta. /sub 1/- and. beta. /sub 2/-adrenergic receptors: immunological and structural comparison

Journal Article · · J. Biol. Chem.; (United States)
OSTI ID:6934304

..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors, pharmacologically distinct proteins, have been reported to be structurally dissimilar. In the present study three techniques were employed to compare the nature of mammalian ..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors. Antibodies against each of the receptor subtypes were raised separately. Polyclonal antisera against ..beta../sub 1/-receptors of rat fat cells were raised in mice, and antisera against ..beta../sub 2/-receptors of guinea pig lung were raised in rabbits. Receptors purified from rat fat cells (..beta../sub 1/-), S49 mouse lymphoma cells (..beta../sub 2/-), and rat liver (..beta../sub 2/-) were probed with these antisera. Each anti-receptor antisera demonstrated the ability to immunoprecipitate purified receptors of both ..beta../sub 1/- and ..beta../sub 2/-subtypes. The mobility of ..beta..-receptors subjected to polyacrylamide gel electrophoresis was probed using antireceptor antibodies and nitrocellulose blots of the gels. Fat cell ..beta../sub 1/-adrenergic receptors display M/sub r/ = 67,000 under reducing conditions and M/sub r/ = 54,000 under nonreducing conditions, as previously reported. Both ..beta../sub 1/- and ..beta../sub 2/-receptors displayed this same shift in electrophoretic mobility observed in the presence as compared to the absence of disulfide bridge-reducing agents, as detected both by autoradiography of the radiolabeled receptors and by immunoblotting of native receptors. Finally, isoelectric focusing of purified radioiodinated ..beta../sub 1/- and ..beta../sub 2/-adrenergic receptors revealed identical isoelectric points. These data are the first to provide analyses of immunological, structural, and biochemical features of ..beta../sub 1/- and ..beta../sub 2/-subtypes in tandem and underscore the structural similarities that exist between these pharmacologically distinct receptors.

Research Organization:
State Univ. of New York, Stony Brook
OSTI ID:
6934304
Journal Information:
J. Biol. Chem.; (United States), Vol. 261:31
Country of Publication:
United States
Language:
English