Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Longitudinal wave precursor signal from an optically penetrating thermoelastic laser source

Conference ·
OSTI ID:6928577
The thermoelastic laser ultrasonic source depends on the optical absorption of energy at the sample surface to produce a volumetric expansion. This paper presents the results of calculations and measurements on the effects of optical penetration of the laser beam into the sample and the elastic waveforms produced. A central result is prediction of a sharp longitudinal waveform that precedes the main waveform and is very similar to that observed with an ablative source (normal point force). The shape of this precursor signal is strongly dependent on the optical penetration depth of the material. A basic explanation of the origin of the precursor signal is given in terms of a one-dimensional model using point sources imbedded within the material. Experimental measurements on a material with a substantial optical penetration depth directly confirm calculations using 2-D integral transform techniques by taking into account the temperature variation with depth. 5 refs., 6 figs.
Research Organization:
EG and G Idaho, Inc., Idaho Falls (USA)
DOE Contract Number:
AC07-76ID01570
OSTI ID:
6928577
Report Number(s):
EGG-M-88130; CONF-880760-2; ON: DE88016950
Country of Publication:
United States
Language:
English