Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Parallel algorithms for continuum dynamics

Conference · · Trans. Am. Nucl. Soc.; (United States)
OSTI ID:6928415

Simply porting existing parallel programs to a new parallel processor may not achieve the full speedup possible; to achieve the maximum efficiency may require redesigning the parallel algorithms for the specific architecture. The authors discuss here parallel algorithms that were developed first for the HEP processor and then ported to the CRAY X-MP/4, the ELXSI/10, and the Intel iPSC/32. Focus is mainly on the most recent parallel processing results produced, i.e., those on the Intel Hypercube. The applications are simulations of continuum dynamics in which the momentum and stress gradients are important. Examples of these are inertial confinement fusion experiments, severe breaks in the coolant system of a reactor, weapons physics, shock-wave physics. Speedup efficiencies on the Intel iPSC Hypercube are very sensitive to the ratio of communication to computation. Great care must be taken in designing algorithms for this machine to avoid global communication. This is much more critical on the iPSC than it was on the three previous parallel processors.

Research Organization:
Michigan Technological Univ., Houghton (USA)
OSTI ID:
6928415
Report Number(s):
CONF-8711195-
Journal Information:
Trans. Am. Nucl. Soc.; (United States), Journal Name: Trans. Am. Nucl. Soc.; (United States) Vol. 55; ISSN TANSA
Country of Publication:
United States
Language:
English