Chemical applications of topology and group theory. 27. Covalent bonding in actinide derivatives
Journal Article
·
· Inorganic Chemistry; (United States)
- Westinghouse Savannah River Lab., Aiken, SC (United States) Univ. of Georgia, Athens (United States)
The d-block transition metals are characterized by forming strong cvalent bonds involving the d orbitals in a nine-orbital spherical sp[sup 3]d[sup 5] manifold thereby leading to the familiar 18-electron rule for the stable electronic configurations of transition metal coordination and organometallic complexes. On the other hand the 4f orbitals in the lanthanides appear to participate very little in covalent bond formation so that the chemistry of the lanthanides is governed largely by electrostatic considerations similar to the chemistry of the alkali and alkaline earth metals but with a predominant +3 oxidation state. The chemistry of the actinides from at least uranium through americium exhibits some features of both the predominantly covalent bonding of the d-block transition metals and the predominantly electrostatic bonding of the lanthanides since both the 5f and 6d orbitals of the actinides can function as valence orbitals leading to an unusual 12-orbital spherical d[sup 5]f[sup 7] manifold. This paper uses elementary group theory to explore how such a d[sup 5]f[sup 7] manifold can participate in the types of covalent bonding prevalent in actinide chemistry.
- DOE Contract Number:
- AC09-76SR00001
- OSTI ID:
- 6915453
- Journal Information:
- Inorganic Chemistry; (United States), Journal Name: Inorganic Chemistry; (United States) Vol. 31:10; ISSN 0020-1669; ISSN INOCAJ
- Country of Publication:
- United States
- Language:
- English
Similar Records
Compression of curium pyrrolidine-dithiocarbamate enhances covalency
Covalent bonding in heavy metal oxides
Journal Article
·
Wed Jul 15 00:00:00 EDT 2020
· Nature (London)
·
OSTI ID:2370431
Covalent bonding in heavy metal oxides
Journal Article
·
Tue Apr 04 00:00:00 EDT 2017
· Journal of Chemical Physics
·
OSTI ID:1372960
Related Subjects
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY
400702* -- Radiochemistry & Nuclear Chemistry-- Properties of Radioactive Materials
ATOMIC MODELS
BINDING ENERGY
DATA
ELECTRONIC STRUCTURE
ELEMENTS
ENERGY
GROUP THEORY
HARTREE-FOCK METHOD
INFORMATION
MATHEMATICAL MODELS
MATHEMATICS
METALS
MOLECULAR ORBITAL METHOD
MOLECULES
NUMERICAL DATA
THEORETICAL DATA
TRANSITION ELEMENT COMPOUNDS
TRANSITION ELEMENTS
400702* -- Radiochemistry & Nuclear Chemistry-- Properties of Radioactive Materials
ATOMIC MODELS
BINDING ENERGY
DATA
ELECTRONIC STRUCTURE
ELEMENTS
ENERGY
GROUP THEORY
HARTREE-FOCK METHOD
INFORMATION
MATHEMATICAL MODELS
MATHEMATICS
METALS
MOLECULAR ORBITAL METHOD
MOLECULES
NUMERICAL DATA
THEORETICAL DATA
TRANSITION ELEMENT COMPOUNDS
TRANSITION ELEMENTS