Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Fatigue in selectively fiber-reinforced titanium matrix composites

Journal Article · · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
 [1]
  1. Nanyang Technological Univ., Singapore (Singapore). School of Mechanical and Production Engineering

Many applications of the Ti alloy matrix composites (TMCs) reinforced with SiC fibers are expected to use the selective reinforcement concept in order to optimize the processing and increase the cost-effectiveness. In this work, unnotched fatigue behavior of a Ti-6Al-4V matrix selectively reinforced with SCS-6 SiC fibers has been examined. Experiments have been conducted on two different model panels. Results show that the fatigue life of the selectively reinforced composites is far inferior to that of the all-TMC panel. The fatigue life decreases with the decreasing effective fiber volume fraction. Suppression of multiple matrix cracking in the selectively reinforced panels was identified as the reason for their lack of fatigue resistance. Fatigue endurance limit as a function of the clad thickness was calculated using the modified Smith-Watson-Topper (SWT) parameter and the effective fiber volume fraction approach. The regime over which multiple matrix cracking occurs is identified using the bridging fiber fracture criterion. A fatigue failure map for the selectively reinforced TMCs is constructed on the basis of the observed damage mechanisms. Possible applications of such maps are discussed.

Sponsoring Organization:
USDOE
OSTI ID:
691394
Journal Information:
Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Journal Name: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Journal Issue: 8 Vol. 30; ISSN 1073-5623; ISSN MMTAEB
Country of Publication:
United States
Language:
English

Similar Records

Fatigue crack initiation and multiplication of unnotched titanium matrix composites
Journal Article · Thu Nov 19 23:00:00 EST 1998 · Acta Materialia · OSTI ID:302380

Axial Tensile Failure Analysis of SiC{sub f}/Ti Composite Based on Continuum Cohesive Zone Model
Journal Article · Thu Feb 14 23:00:00 EST 2019 · Journal of Materials Engineering and Performance · OSTI ID:22970991

Interfacial reaction in SiC{sub f}/Ti-6Al-4V composite by using transmission electron microscopy
Journal Article · Sat Nov 14 23:00:00 EST 2015 · Materials Characterization · OSTI ID:22587052