skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The equation of state of an energy landscape

Journal Article · · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical
DOI:https://doi.org/10.1021/jp991384m· OSTI ID:691289
; ;  [1];  [2]
  1. Princeton Univ., NJ (United States). Dept. of Chemical Engineering
  2. Lucent Technologies, Murray Hill, NJ (United States). Bell Labs.

The topography of the multidimensional potential energy landscape is receiving much attention as a useful object of study for understanding complex behavior in condensed-phase systems. Examples include protein folding, the glass transition, and fracture dynamics in solids. The manner in which a system explores its underlying energy landscape as a function of temperature offers insight into its dynamic behavior. Similarly, sampling in density, in particular the relationship between the pressure of mechanically stable configurations and their bulk density (the equation of state of the energy landscape), provides fresh insights into the mechanical strength of amorphous materials and suggests a previously unexplored connection with the spinodal curve of a superheated liquid. Mean-field calculations show a convergence at low temperature between the superheated liquid spinodal and the pressure-dependent Kauzmann locus, along which the difference in entropy between a supercooled liquid and its stable crystalline form vanishes. This convergence appears to have implications for the glass transition. Application of these ideas to water sheds new light into this substance`s behavior under conditions of low-temperature metastability with respect to its crystalline phases.

Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
FG02-87ER13714
OSTI ID:
691289
Journal Information:
Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical, Vol. 103, Issue 35; Other Information: PBD: 2 Sep 1999
Country of Publication:
United States
Language:
English

Similar Records

Singularity-free interpretation of the thermodynamics of supercooled water
Journal Article · Sat Jun 01 00:00:00 EDT 1996 · Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics · OSTI ID:691289

Glasses denser than the supercooled liquid
Journal Article · Fri Jul 30 00:00:00 EDT 2021 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:691289

Local energy landscape in a simple liquid
Journal Article · Wed Nov 26 00:00:00 EST 2014 · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics · OSTI ID:691289