Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Studies of energy-transfer and electron-transfer processes involving the /sup 3/Au/sub 2u/ excited states of binuclear rhodium isocyanide complexes

Journal Article · · J. Am. Chem. Soc.; (United States)
DOI:https://doi.org/10.1021/ja00542a015· OSTI ID:6904000
The lowest electronic excited states of Rh/sub 2/(br)/sub 4//sup 2 +/ (br = 1,3-diisocyanopropane) and Rh/sub 2/(TMB)/sub 4//sup 2 +/ (TMB = 2,5-dimethyl-2,5-diisocyanohexane) are relatively long-lived emissive triplets (/sup 3/A/sub 2u/). The /sup 3/A/sub 2u/ lifetimes in acetonitrile are 8.5 +- 0.5 ..mu..s for Rh/sub 2/(br)/sub 4//sup 2 +/ and 25 +- 5 ns for Rh/sub 2/(TMB)/sub 4//sup 2 +/ (21/sup 0/C). The triplet energy of Rh/sub 2/(br)/sub 4//sup 2 +/ has been estimated to be about 39 kcal/mol (approximately 1.7 eV, approximately 730 nm) from energy-transfer quenching experiments. The /sup 3/A/sub 2u/ excited states of Rh/sub 2/(br)/sub 4//sup 2 +/ and Rh/sub 2/(TMB)/sub 4//sup 2 +/ undergo electron-transfer reactions with oxidative and reductive quenchers. Reductive quenching by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), and oxidative quenching by paraquat (PQ/sup 2 +/) have been studied in detail. In methanol solution, Rh/sub 2/(br)/sub 4//sup 2 +/*(/sup 3/A/sub 2u/) reacts with TMPD to give Rh/sub 2/(br)/sub 4//sup 2 +/ and TMPD/sup +/ (k/sub b/, the back-reaction rate constant, is 1 x 10/sup 9/ M/sup -1/s/sup -1/); similarly, Rh/sub 2/(TMB)/sub 4//sup 2 +/*(/sup 3/A/sub 2u/) reacts with TMPD to give Rh/sub 2/(TMB)/sub 4//sup +/ and TMPD/sup +/ (k/sub b/ = 1.4 x 10/sup 9/ M/sup -1/s/sup -1/). Oxidation of Rh/sub 2/(TMB)/sub 4//sup 2 +/*(/sup 3/A/sub 2u/) by PQ/sup 2 +/ in methanol gives Rh/sub 2/(TMB)/sub 4//sup 3 +/ and PQ/sup +/ (k/sub b/ = 2.2 x 10/sup 8/ M/sup -1/s/sup -1/; ..mu.. = 1.95 x 10/sup -2/ M). One-electron oxidation of Rh/sub 2/(br)/sub 4//sup 2 +/*(/sup 3/A/sub 2u/) by PQ/sup 2 +/ is observed, but the kinetics of the back-reaction are complex, owing to competing oligomerization processes.
OSTI ID:
6904000
Journal Information:
J. Am. Chem. Soc.; (United States), Journal Name: J. Am. Chem. Soc.; (United States) Vol. 102:22; ISSN JACSA
Country of Publication:
United States
Language:
English