skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema

Abstract

As part of a study on the effects of acute ozone stress on the lung surfactant system, we correlated morphometric, biochemical, and functional indices of lung injury using male rats exposed to 3 ppm ozone for 1, 2, 4, and 8 hr. Evaluation of lung mechanics, using the Pulmonary Evaluation and Diagnostic Laboratory System, revealed a significant decrease in dynamic lung compliance (ml/cmH[sub 2]O/kg) from a control value of 0.84 [plus minus] 0.02 (SEM) to 0.72 [plus minus] 0.04 and 0.57 [plus minus] 0.06 at 4 and 8 hr, respectively. At 2 hr there was a transient increase in PaO[sub 2] to 116 torr (control = 92 torr) followed by a decrease at 4 hr (65 torr) and 8 hr (55 torr). Morphometry of lung tissue, fixed by perfusion of fixative via the pulmonary artery at 12 cm H[sub 2]O airway distending pressure, demonstrated an increase in the area of the intravascular compartment at 8 hr, in association with a 65 and 39% replacement of the alveolar area by fluid in ventral and dorsal lung regions, respectively. There was a positive correlation (r = 0.966) between alveolar edema and transudated proteins in lavage fluid. A stepwise multiple regression model, withmore » edema as the dependent variable, suggested that pulmonary vasodilatation, hypoxemia, and depletion of surfactant tubular myelin in lavage fluid were indices for predicting alveolar edema. In a second model, with lavage protein concentration as the dependent variable, decreasing dynamic compliance and hypoxemia were predictors of progressive, intraalveolar transudation of plasma proteins. The above structural-functional relationships support the concept that ozone-induced high-protein alveolar edema is pathogenetically linked to pulmonary hyperemia, deficiency of surfactant tubular myelin, and associated lung dysfunctions.« less

Authors:
; ; ; ; ;  [1]
  1. (James A. Haley Veterans Hospital Research Service, Tampa, FL (United States))
Publication Date:
OSTI Identifier:
6899535
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; (United States); Journal Volume: 117:1
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; 59 BASIC BIOLOGICAL SCIENCES; LUNGS; EDEMA; OZONE; ACUTE EXPOSURE; BIOLOGICAL EFFECTS; RATS; EVALUATION; LABORATORY ANIMALS; LAVAGE; MYELIN; PLASMA; RESPIRATORY SYSTEM DISEASES; ANIMALS; BODY; CELL CONSTITUENTS; CELL MEMBRANES; DISEASES; MAMMALS; MEMBRANES; ORGANS; PATHOLOGICAL CHANGES; RESPIRATORY SYSTEM; RODENTS; SYMPTOMS; VERTEBRATES 560300* -- Chemicals Metabolism & Toxicology; 550200 -- Biochemistry

Citation Formats

Paterson, J.F., Hammond, M.D., Montgomery, M.R., Sharp, J.T., Farrier, S.E., and Balis, J.U. Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema. United States: N. p., 1992. Web. doi:10.1016/0041-008X(92)90214-D.
Paterson, J.F., Hammond, M.D., Montgomery, M.R., Sharp, J.T., Farrier, S.E., & Balis, J.U. Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema. United States. doi:10.1016/0041-008X(92)90214-D.
Paterson, J.F., Hammond, M.D., Montgomery, M.R., Sharp, J.T., Farrier, S.E., and Balis, J.U. 1992. "Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema". United States. doi:10.1016/0041-008X(92)90214-D.
@article{osti_6899535,
title = {Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema},
author = {Paterson, J.F. and Hammond, M.D. and Montgomery, M.R. and Sharp, J.T. and Farrier, S.E. and Balis, J.U.},
abstractNote = {As part of a study on the effects of acute ozone stress on the lung surfactant system, we correlated morphometric, biochemical, and functional indices of lung injury using male rats exposed to 3 ppm ozone for 1, 2, 4, and 8 hr. Evaluation of lung mechanics, using the Pulmonary Evaluation and Diagnostic Laboratory System, revealed a significant decrease in dynamic lung compliance (ml/cmH[sub 2]O/kg) from a control value of 0.84 [plus minus] 0.02 (SEM) to 0.72 [plus minus] 0.04 and 0.57 [plus minus] 0.06 at 4 and 8 hr, respectively. At 2 hr there was a transient increase in PaO[sub 2] to 116 torr (control = 92 torr) followed by a decrease at 4 hr (65 torr) and 8 hr (55 torr). Morphometry of lung tissue, fixed by perfusion of fixative via the pulmonary artery at 12 cm H[sub 2]O airway distending pressure, demonstrated an increase in the area of the intravascular compartment at 8 hr, in association with a 65 and 39% replacement of the alveolar area by fluid in ventral and dorsal lung regions, respectively. There was a positive correlation (r = 0.966) between alveolar edema and transudated proteins in lavage fluid. A stepwise multiple regression model, with edema as the dependent variable, suggested that pulmonary vasodilatation, hypoxemia, and depletion of surfactant tubular myelin in lavage fluid were indices for predicting alveolar edema. In a second model, with lavage protein concentration as the dependent variable, decreasing dynamic compliance and hypoxemia were predictors of progressive, intraalveolar transudation of plasma proteins. The above structural-functional relationships support the concept that ozone-induced high-protein alveolar edema is pathogenetically linked to pulmonary hyperemia, deficiency of surfactant tubular myelin, and associated lung dysfunctions.},
doi = {10.1016/0041-008X(92)90214-D},
journal = {Toxicology and Applied Pharmacology; (United States)},
number = ,
volume = 117:1,
place = {United States},
year = 1992,
month =
}
  • To test the hypothesis that neutrophils contribute to acute, ozone-induced epithelial damage in the lung, rats were depleted of their circulating neutrophils by intraperitoneal injection of a rabbit anti-rat neutrophil serum (ANS) 12 hr prior to an 8-hr exposure to 1.0 ppm ozone. Additional rats were given an injection of normal rabbit serum (NRS) prior to ozone exposure. Exposures were followed by postexposure periods in filtered air for 0, 4, or 16 hr. Control rats were given either ANS or NRS and then exposed only to filtered air. Analysis of bronchoalveolar lavage fluid (BALF) from NRS-treated rats revealed a significantmore » increase in total neutrophils above that of controls at the 4- and 16-hr postexposure times, with a peak increase at 4 hr postexposure. In contrast, there was almost total ablation of the BALF neutrophil response in the ANS-treated rats at all times. Ozone caused an increase in BALF protein, fibronectin, and interleukin-6 above those in controls in both the NRS- and ANS-treated rats, but the only significant difference between the two groups was a level of fibronectin in the neutrophil-depleted animals higher than that in the neutrophil-sufficient animals at the 0-hr postexposure time. Electron microscopic morphometry on lungs fixed by intravascular perfusion demonstrated no significant differences in the volume per surface area epithelial basal lamina (Vs) of necrotic and degenerating epithelial cells in central acini between the neutrophil-depleted and neutrophil-sufficient animals. From these results, we concluded that neutrophils do not play a detectable role in contributing to the early epithelial damage in the lung caused by an acute exposure to ozone.« less
  • Ozone is a strong oxidizing agent that can cause lung damage and edema. There is evidence that it does so by causing peroxidation of membrane lipids. However, the elevation in lung activity of copper, zinc superoxide dismutase (Cu, ZnSOD), and manganese superoxide dismutase (MnSOD) during exposure to ozone suggests that increased production of superoxide could contribute to lung edema caused by ozone. This latter observation, and preliminary evidence that treatment of rats with endotoxin elevates lung activity of MnSOD without elevation of the activity of Cu, ZnSOD, catalase (CAT), or glutathione peroxidase (GP), led to the present study. We treatedmore » rats with endotoxin, exposed them to different concentrations of ozone, measured lung wet weight to dry weight ratio, thiobarbituric acid-reactive material (TBAR), and assayed lung tissue for Cu, ZnSOD, MnSOD, CAT, and GP activity. Our major findings are, (1) a strongly edemogenic concentration of ozone-lowered MnSOD activity; (2) endotoxin treatment of air-breathing rats did not decrease lipid peroxidation as indicated by the lung concentration of TBAR; (3) induction of increased MnSOD activity in lung by treatment with endotoxin was associated with virtually complete protection against an otherwise edemogenic concentration of ozone, with less lipid peroxidation, and with less loss of weight; and (4) this protection occurred without elevated Cu, ZnSOD, CAT, or GP activity.« less
  • Several acute and chronic conditions that alter the integrity of the pulmonary epithelium increased the rate of absorption or clearance into the circulation of small solutes deposited in the alveoli. Technetium 99m diethylenetriamine pentaacetic acid can be deposited in the lungs as a submicronic aerosol and its rate of clearance measured with a gamma camera or simple probe. This clearance technique is currently being used to evaluate patients who have developed pulmonary edema and also to detect those patients from a high risk group who are likely to develop adult respiratory distress syndrome (ARDS). Its role in the evaluation ofmore » patients with pulmonary edema is still under active investigation. It is clear that a single measurement in patients who smoke is not useful, but repeated measurements may provide important information. The lung clearance measurement is very sensitive to changes in epithelial integrity but is not specific for ARDS. It may be most useful in combination with other predictive tests or when the clearance rate is normal. 54 references.« less
  • To examine the hypothesis that the acute reversible changes caused by ozone (O3) exposure are mediated by tachykinin release, guinea pigs were depleted of tachykinins by use of repeated capsaicin (CAP) injections before O3 exposure in an attempt to prevent O3-induced functional changes. Unexpectedly, CAP pretreatment caused divergent results in the functional responses to O3. Ventilatory measurements obtained from CAP-pretreated O3-exposed (CAP-O3) animals were exacerbated rather than diminished compared with the effects of O3 alone. Similarly, lavage fluid protein accumulation was enhanced in the CAP-O3 group compared with the O3-exposed group. In better agreement with our initial hypothesis, the CAP-O3more » group was less responsive than the O3-exposed animals to histamine aerosol challenge. Additionally, Evans blue dye accumulation, a hallmark of tachykinin release, was increased in O3-exposed animals and was partially blocked in the CAP-O3 group. These data suggest that tachykinin-containing sensory fibers are unlikely to mediate the acute effects of O3 exposure on tidal breathing and lavage fluid protein accumulation but may play a role in causing post-O3 airway hyperreactivity and protein extravasation into the trachea.« less
  • To investigate the relationship between granulocyte emigration and epithelial injury in specific airway generations of the tracheobronchial tree following short-term ozone exposure, we exposed rhesus monkeys for 8 h to 0.00 (controls) or 0.96 ppm ozone with post-exposure periods of 1, 12, 24, 72, and 168 h in filtered air before necropsy. There were five control and three exposed monkeys for each of the post-exposure times for a total of 20 monkeys. Neutrophils isolated from peripheral blood and labeled with 111In-tropolonate were infused in the cephalic vein in unanesthetized monkeys (except the 1-h group) 4 to 5 h before necropsy.more » The trachea and microdissected bronchi (fourth and ninth generations) and respiratory bronchioles (fifteenth generation) from the right upper lobe of each monkey were examined by electron microscopy. Labeled neutrophil influx into lung tissue and bronchoalveolar lavage fluid (BALF) was maximal at 12 h and returned to baseline by 24 h after exposure. This was in contrast to total neutrophils in BALF, which were significantly elevated through 24 h after exposure but returned to baseline by 72 h. Lavage protein was significantly elevated at 24 h after exposure but was at control levels at all other times. Morphometric observations showed epithelial necrosis at 1 and 12 h in the trachea and bronchioles but continued to be observed in significant numbers at 24 h after exposure in bronchi. A significant increase in the labeling index of epithelial cells was observed at 12 h only in bronchi. Epithelial necrosis and repair was associated with the presence of granulocytes in the epithelium and interstitium of all airway levels. However, eosinophils were maximally increased in the epithelium and interstitium of bronchi at 24 h after exposure when epithelial necrosis was maximal in these airways and when lavage protein was significantly elevated.« less