Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Innovative processing to produce advanced intermetallic materials. Phase 1 final report

Technical Report ·
OSTI ID:6896122

The program demonstrates the technical feasibility of synthesizing submicron titanium aluminide in a thermal rf plasma. Micron and submicron spherical titanium aluminide particles are produced in argon, hydrogen, and argon/hydrogen plasmas from the reaction of TiCl4(g), and Al(g). The ratio of Ti and Al is varied to produce the compounds Ti3Al, TiAl, and TiAl3. Microalloying with boron and macroalloying with niobium is demonstrated. Ti3Al whiskers can be produced, as well as other intermetallics of niobium aluminide, nickel aluminide, and molybdenum disilicide in the plasma synthesis process. Since submicron particles are produced, they have a high surface area and are sensitive to oxidation if not treated with a fugitive protective coating or utilized in a nonoxidizing atmosphere. Ti3Al particles are consolidated and utilized as a matrix for TiC and AlN composites. The submicron AlTi3 has significantly higher strength at room temperature than reported for commercial Ti3Al-11Nb alloy and useable strength is maintained up to 1000 C. The elongation is about the same as for commercial material because of possible oxide contamination in powder handling. However, dimpling and nacking is evident in the fracture surface, which suggests true room temperature ductility. Titanium aluminides have the potential to replace superalloys and become the dominant material for aerospace engines, air frames and skins for hypersonic vehicles.

Research Organization:
Materials and Electrochemical Research Corp., Tucson, AZ (United States)
OSTI ID:
6896122
Report Number(s):
PB-93-158038/XAB; CNN: NSF-ISI88-60240
Country of Publication:
United States
Language:
English