Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Reconfigurable fault-tolerant multiprocessor system for real-time control

Thesis/Dissertation ·
OSTI ID:6891637
Real-time control applications place stringent constraints in computers controlling them since the failure of a computer could result in costly damages and even loss of human lives. Fault-tolerant computers, therefore, have been always in high demand in critical avionic and aerospace applications. However, the use of redundancy techniques to achieve fault tolerance in industrial applications has only recently become feasible due to the rapid decrease in cost and increase in performance of microprocessors. As more and more robots are being built to replace human beings in dangerous and difficult tasks, the need for a reliable computer for robotics control increases. This need, in particular, motivated the research described in this dissertation - the design and implementation of a reconfigurable fault-tolerant multiprocessor system (the FREMP system). The FREMP system consists of four processing units (PUs) and three common parallel buses. Each PU is a combination of an Intel 86/30 single board computer and a custom fault detection/masking circuit board (FDM board). A hardware/software combined scheme was devised to detect faults and correct errors. This scheme has shown to be more efficient than software voting while maintaining the flexibility of software approaches. Time-frame scheduling was adopted to schedule tasks for execution.
Research Organization:
Ohio State Univ., Columbus (USA)
OSTI ID:
6891637
Country of Publication:
United States
Language:
English