skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrostatic and triaxial compression experiments on unpoled PZT 95/5-2Nb ceramic: The effects of shear stress on the F[sub R1] [yields] A[sub O] polymorphic phase transformation

Technical Report ·
OSTI ID:6858800

Hydrostatic and constant-stress-difference (CSD) experiments were conducted at RT on 3 different sintering runs of unpoled, Nb-doped lead-zirconate-titanate ceramic (PZT 95/5-2Nb) in order to quantify influence of shear stress on displacive, martensitic-like, first-order, rhombohedral [r arrow] orthorhombic phase transformation. In hydrostatic compression at RT, the transformation began at about 260 MPa, and was usually incompletely reversed upon return to ambient. Strains associated with the transformation were isotropic, both on first and subsequent hydrostatic cycles. Results for CSD tests were quite different. First, the confining pressure and mean stress at which the transition begins decreased linearly with increasing stress difference. Second, the rate of transformation decreased with increasing shear stress and the accompanying purely elastic shear strain. This contrasts with the typical observation that shear stresses increase reaction and transformation kinetics. Third, strain was not isotropic during the transformation: axial strains were greater and lateral strains smaller than for the hydrostatic case, though volumetric strain behavior was comparable for the two types of tests. However, this effect does not appear to be an example of true transformational plasticity: no additional unexpected strains accumulated during subsequent cycles through transition under nonhydrostatic loading. If subsequent hydrostatic cycles were performed on samples previously run under CSD conditions, strain anisotropy was again observed, indicating that the earlier superimposed shear stress produced a permanent mechanical anisotropy in the material. The mechanical anisotropy probably results from a one-time'' crystallographic preferred orientation that developed during the transformation under shear stress. Finally, in a few specimens from one particular sintering run, sporadic evidence for a shape memory effect'' was observed.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
6858800
Report Number(s):
SAND-92-0484; ON: DE93003233
Country of Publication:
United States
Language:
English