A study of surfactant adsorption with applications in surfactant assisted enhanced oil recovery processes
Thesis/Dissertation
·
OSTI ID:6857300
A study is presented to assess the feasibility of high-pH preflushing to reduce surfactant adsorption in micellar flooding. Under static or dynamic flow conditions, adsorption of a pure anionic surfactant on Berea is eliminated at mild electrolyte above pH 8, 2 pH units above the experimental determined pzc. Static and dynamic studies of hydroxide consumption by Berea indicate mild dissolution at the pH range of interest. The effect of pH on the adsorption isotherm for Berea indicate a large increase in logarithmic slope at high pH. Similar studies are presented for kaolinite and alumina. A patch-wise, phase separation model is presented to quantify the relationship between adsorption, and bulk pH and salinity. The concept of the site-binding model is incorporated into the development of surface aggregates (both admicelles and hemimicelles), and it is confirmed that the aggregates are stabilized at high pH by the abstraction of positive charge to the surface beneath the aggregate, and by high counterion binding, allowing physical adsorption above the pzc. A novel sweep improvement process, surfactant assisted waterflooding, is presented. The chromatographic and phase separation behavior of dissimilar surfactants and their mixtures allows a selective and controllable blocking of watered-out zones of a reservoir. A mathematical model is developed, and the theory of coherence is extended to multidimensional, multiphase, multicomponent flow, allowing the development of a novel simulator, which is then applied. The results indicate that the blocking mechanism is very selective in markedly heterogeneous reservoir. Shorter reservoirs have the highest potential for application; high oil recoveries are then possible since blocking can be controlled to occur deep inside the watered out zones.
- Research Organization:
- Oklahoma Univ., Norman, OK (USA)
- OSTI ID:
- 6857300
- Country of Publication:
- United States
- Language:
- English
Similar Records
Modeling effects of pH and counterions on surfactant adsorption at the oxide/water interface
Secondary recovery of petroleum by surfactant-water flooding
Mineral-Surfactant Interaction for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery
Journal Article
·
Sun Sep 01 00:00:00 EDT 1996
· Industrial and Engineering Chemistry Research
·
OSTI ID:377727
Secondary recovery of petroleum by surfactant-water flooding
Patent
·
Mon Dec 02 23:00:00 EST 1968
·
OSTI ID:7301153
Mineral-Surfactant Interaction for Minimum Reagents Precipitation and Adsorption for Improved Oil Recovery
Technical Report
·
Sat Sep 30 00:00:00 EDT 2006
·
OSTI ID:902900
Related Subjects
02 PETROLEUM
020300* -- Petroleum-- Drilling & Production
ADSORPTION
ADSORPTION ISOTHERMS
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
ALUMINIUM SILICATES
ANALOG SYSTEMS
BUFFERS
CHALCOGENIDES
CHROMATOGRAPHY
CORRELATIONS
DISSOLUTION
ENERGY SOURCES
ENHANCED RECOVERY
FLOW MODELS
FLUID FLOW
FLUID INJECTION
FLUID MECHANICS
FOSSIL FUELS
FUELS
FUNCTIONAL MODELS
ISOTHERMS
KAOLINITE
MATHEMATICAL MODELS
MECHANICS
MICROEMULSION FLOODING
MINERALS
MISCIBLE-PHASE DISPLACEMENT
MULTIPHASE FLOW
OIL WELLS
OXIDES
OXYGEN COMPOUNDS
PETROLEUM
PH VALUE
PHASE STUDIES
RECOVERY
ROCKS
SALINITY
SANDSTONES
SEDIMENTARY ROCKS
SEPARATION PROCESSES
SILICATE MINERALS
SILICATES
SILICON COMPOUNDS
SIMULATORS
SORPTION
SURFACTANTS
WATERFLOODING
WELLS
020300* -- Petroleum-- Drilling & Production
ADSORPTION
ADSORPTION ISOTHERMS
ALUMINIUM COMPOUNDS
ALUMINIUM OXIDES
ALUMINIUM SILICATES
ANALOG SYSTEMS
BUFFERS
CHALCOGENIDES
CHROMATOGRAPHY
CORRELATIONS
DISSOLUTION
ENERGY SOURCES
ENHANCED RECOVERY
FLOW MODELS
FLUID FLOW
FLUID INJECTION
FLUID MECHANICS
FOSSIL FUELS
FUELS
FUNCTIONAL MODELS
ISOTHERMS
KAOLINITE
MATHEMATICAL MODELS
MECHANICS
MICROEMULSION FLOODING
MINERALS
MISCIBLE-PHASE DISPLACEMENT
MULTIPHASE FLOW
OIL WELLS
OXIDES
OXYGEN COMPOUNDS
PETROLEUM
PH VALUE
PHASE STUDIES
RECOVERY
ROCKS
SALINITY
SANDSTONES
SEDIMENTARY ROCKS
SEPARATION PROCESSES
SILICATE MINERALS
SILICATES
SILICON COMPOUNDS
SIMULATORS
SORPTION
SURFACTANTS
WATERFLOODING
WELLS