skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Air cavity effects on the radition dose to the larynx using Co-60, 6 MV, and 10 MV photon beams

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
; ; ;  [1]
  1. Georgetown Univ. Medical Center, Washington, DC (United States)

The purpose was to determine the perturbation effect in the surface layers of lesions located in the air-tumor tissues interface of larynx using {sup 60}Co, 6 MV, and 10 MV photon beams. Thermoluminescent dosimeters (TLDs) were embedded at 16 measurement locations in slab no. 8 of a humanoid phantom and exposed to two lateral-opposed beams using standard 7 {times} 7 cm fields. Similarly, radiographic and radiochromic films were placed between slabs no. 7 and no. 8 of the humanoid phantom and exposed to two lateral-opposed radiation beams. The dosimeters were irradiated with {sup 60}Co, 6 MV, and 10 MV photon beams. Computer tomography (CT) treatment planning without inhomogeneity correction was performed. At the tissue-air interface, the average measured percentage dose (% dose{sub m}) is about (108.7 {+-} 4.8%) with TLD data, (96.8 {+-} 2.5%) with radiographic film data, and (100.8 {+-} 4.9%) with radiochromic film data. Similarly, in the central part of the cavity, the % dose{sub m} is (98.4 {+-} 3.1)% with TLD data, (94.3 {+-} 3.3)% with radiographic film data, and (91.7 {+-} 5.0)% with radiochromic film data. Using the CT-based generated dose distribution (without inhomogeneity correction), the average calculated percentage dose (% dose{sub c}) is (98.7 {+-} 1.0%) at the tissue-air interface and 98% in the central part of the air cavity. For the beam energies studied, the variation from the % dose {sub m} at the tissue-air interface for a given dosimetry technique is relatively small and therefore should not be significant in clinical settings. The variation from the % dose{sub m} at the tissue-air interface is more significant for lower energies. This variation is about 4.3% for 10 MV photon beam, therefore, while institutional practice favors lower energy ({sup 60}Co to 6 MV) for node-negative glottic cancers, physical/dosimetric evidence offers no disadvantage to the use of higher energy photons. 10 refs., 7 figs., 2 tabs.

Sponsoring Organization:
USDOE
OSTI ID:
68511
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 29, Issue 5; Other Information: PBD: 30 Jul 1994
Country of Publication:
United States
Language:
English