Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The development and characterization of methanol decomposition catalysts

Book ·
OSTI ID:6848196
The effect of catalyst doping was investigated using 2% and 3% palladium catalysts. The dopant was found to have a significant effect on the activity, selectivity, and thermal stability of the catalysts. The lithium, sodium, and barium-doped catalysts deactivated when exposed to a thermal cycle, whereas, the rubidium, cesium, and lanthanum-doped catalysts did not. Catalyst doping generally resulted in a decrease in the initial catalyst activity. This varied from a small decrease for the lanthana-doped catalyst to a large decrease for the alkali-doped catalysts. Selectivity for CO and H{sub 2} was increased by doping due to the neutralization of acid sites on the alumina. To avoid the use of large quantities of rare materials in the catalysts, two approaches were taken: (1) Development of a catalyst using 0.5% Pd, and (2) development of a base metal catalyst. Lowering the palladium content of the catalysts resulted in severe deactivation of all catalysts. The base metal catalyst development showed iron, cobalt and copper catalysts to be unacceptable due to severe deactivation. Nickel catalysts operating under the proper conditions were found to be adequate methanol decomposition catalysts. A final study demonstrated the feasibility of developing a high temperature methanol decomposition catalysts for use in hypersonic aircraft. The second phase of the study was the characterization of the palladium catalysts. Chemisorption results indicated that the palladium dispersion was affected by the dopant. The dispersion of the palladium, however, cannot account for the variation in the initial catalyst activity. CO{sub 2} thermal desorption results indicated that the alkali metal dopants effectively neutralized the acidic sites on the alumina support and produced a basic surface.
Research Organization:
Colorado School of Mines, Golden, CO (USA)
OSTI ID:
6848196
Country of Publication:
United States
Language:
English