Modeling of scattering and absorption by nonspherical cirrus ice particles at thermal infrared wavelengths
Journal Article
·
· Journal of the Atmospheric Sciences
- Dalhousie Univ., Halifax, Nova Scotia (Canada). Dept. of Oceanography
- Univ. of California, Los Angeles, CA (United States). Dept. of Atmospheric Sciences
This paper examines a number of commonly used methods for the calculation of the scattering and absorption properties of nonspherical ice crystals at thermal infrared wavelengths. It is found that, for randomly oriented nonspherical particles, Mie theory using equivalent ice spheres tends to overestimate the absorption efficiency while the anomalous diffraction theory (ADT) and the geometric optics method (GOM) tend to underestimate it. The absorption efficiency is not sensitive to the particle shape when the size parameter is large. Herein a composite scheme is used that is valid for nonspherical particles with a wide range of size parameters. This scheme is a composite of Mie theory, GOM, and ADT to fit the single-scattering properties of hexagonal particles derived from the GOM for large size parameters and the finite-difference time domain technique for small size parameters. Applying this composite technique, errors in the broadband emissivity of cirrus clouds associated with conventional approaches are examined. It is shown that, when the projected area is preserved, Mie results overestimate the emissivity of cirrus clouds while, when the volume is preserved, Mie results underestimate the emissivity. Mie theory yields the best results when both projected area and volume are preserved (the relative errors are less than 10%). It is also shown that the ADT underestimates cirrus cloud emissivity. In some cases, the relative errors can be as large as 20%. The errors in the GOM are also significant and are largely a result of nonspherical particles with size parameters smaller than 40.
- Sponsoring Organization:
- USDOE, Washington, DC (United States); Natural Sciences and Engineering Research Council of Canada, Ottawa, ON (Canada); National Aeronautics and Space Administration, Washington, DC (United States)
- DOE Contract Number:
- FG02-97ER62363
- OSTI ID:
- 684527
- Journal Information:
- Journal of the Atmospheric Sciences, Journal Name: Journal of the Atmospheric Sciences Journal Issue: 16 Vol. 56; ISSN JAHSAK; ISSN 0022-4928
- Country of Publication:
- United States
- Language:
- English
Similar Records
An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models
Modeling cirrus clouds. Part II: Treatment of radiative properties
The effects of small ice crystals on the infrared radiative properties of cirrus clouds. Semiannual status report, 1 October 1989-31 March 1990
Journal Article
·
Tue Sep 01 00:00:00 EDT 1998
· Journal of Climate
·
OSTI ID:659001
Modeling cirrus clouds. Part II: Treatment of radiative properties
Journal Article
·
Tue Oct 15 00:00:00 EDT 1996
· Journal of the Atmospheric Sciences
·
OSTI ID:443460
The effects of small ice crystals on the infrared radiative properties of cirrus clouds. Semiannual status report, 1 October 1989-31 March 1990
Technical Report
·
Sat Mar 31 23:00:00 EST 1990
·
OSTI ID:6187027