Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Wind tunnel testing to predict control room atmospheric dispersion factors

Conference · · Transactions of the American Nuclear Society; (United States)
OSTI ID:6844075
;  [1];  [2]
  1. Consumer Power Co., Covert, MI (United States)
  2. Sargent Lundy, Chicago, IL (United States)
Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10[sup [minus]2] m[sup 3]/s (25 ft[sup 3]/min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage.
OSTI ID:
6844075
Report Number(s):
CONF-931160--
Conference Information:
Journal Name: Transactions of the American Nuclear Society; (United States) Journal Volume: 69
Country of Publication:
United States
Language:
English