skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metal-insulator transitions, structural and microstructural evolution of RNiO{sub 3} (R = Sm, Eu, Gd, Dy, Ho, Y) perovskites: Evidence for room-temperature charge disproportionation in monoclinic HoNiO{sub 3} and YNiO{sub 3}

Journal Article · · Journal of the American Chemical Society
DOI:https://doi.org/10.1021/ja984015x· OSTI ID:684313

RNiO{sub 3} nickelates have been prepared under high oxygen pressure (R = Sm, Eu, Gd) or high hydrostatic pressure (R = Dy, Ho, Y) in the presence of KClO{sub 4}. The samples have been investigated at room temperature (RT) by synchrotron X-ray powder diffraction to follow the evolution of the crystal structures and microstructures along the series. The distortion of the orthorhombic (space group Pbnm) perovskite progressively increases along the series, leading for the smallest Ho{sup 3+} and Y{sup 3+} cations to a subtle monoclinic distortion (space group P2{sub 1}/n) which implies the splitting of the Ni positions in the crystal. This symmetry was confirmed by neutron powder diffraction; the crystal structures for R = Ho and Y were refined simultaneously from RT synchrotron and neutron powder diffraction data. In both perovskites the oxygen octahedra around Ni1 and Ni2 positions are significantly distorted, suggesting the manifestation of Jahn-Teller effect, which is almost absent in the nickelates` of lighter rare earths. The very distinct mean Ni-O bond distances observed for Ni1 and Ni2 atoms at RT, in the insulating regime, suggest the presence of a charge disproportionation effect, considered as driving force for the splitting of the Ni positions. The metal-insulator (MI) transitions for RNiO{sub 3} (R = Gd, Dy, Ho, Y), above room temperature, have been characterized by DSC. The transition temperatures for Gd, Dy, Ho, and Y oxides in the heating runs are 510.7, 563.9, 572.7, and 581.9 K, respectively. The increasing rate of T{sub MI} for Dy, Ho, and Y materials is lower than that expected from the variation of T{sub MI} for the larger rare earth perovskites. This is probably related to the subtle monoclinic distortion found for Ho and Y nickelates. The high-resolution synchrotron X-ray powder patterns have revealed changes in the microstructure along the series. Powder patterns for orthorhombic RNiO{sub 3} (R = Sm, Eu, Gd, Dy) display asymmetric tails for some reflections which are due to structural mistakes such as stacking faults or regular intergrowths. These mistakes are not present in monoclinic RNiO{sub 3} (R = Ho, Y) nickelates.

OSTI ID:
684313
Journal Information:
Journal of the American Chemical Society, Vol. 121, Issue 20; Other Information: PBD: 26 May 1999
Country of Publication:
United States
Language:
English