Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Base catalysis by alkali modified zeolites. III. Alkylation with methanol

Journal Article · · Journal of Catalysis; (USA)
;  [1]
  1. Virginia Polytechnic Institute and State Univ., Blacksburg (USA)
Ion exchanged CsNaX and CsNaY, cesium acetate impregnated CsNaX (CsAce/CsNaX) and CsNaY (CsAce/CsNaY), and MgO have been reacted with isopropanol at 425 C and atmospheric pressure to assess their acid/base properties at a temperature consistent with that used in the side chain alkylation of toluene with methanol. The results suggest that the ability of the catalysts tested here to promote a base mediated reaction follow the order of MgO > CsAce/CsNaY > CsAce/CsNaX {approx equal} CsNaY > CsNaX. Selectivities to acetone measured at 4.73% conversion follow this order as well, ranging from 95.7% and 93.9% for MgO and CsAce/CsNaY, respectively, to 17.6% for the CsNaX. Thus, these catalysts can be grouped into two categories: (i) catalysts which vary in acid/base properties yet possess identical topology (e.g., the zeolites) and (ii) catalysts which vary in topology yet have similar acid/base properties (e.g., MgO and CsAce/CsNaY). These catalysts were compared using the side chain alkylation of toluene, ethane, methane, and acetone with methanol. For the impregnated zeolites, similar toluene conversions were observed. No formaldehyde was observed in the product stream of the impregnated Y zeolite. Both MgO and CsAce/CsNaY had similar methanol decomposition products; i.e., no formaldehyde and high CO formation, yet unlike CsAce/CsNaY no toluene conversion was observed for MgO. No conversion of ethane or methane was observed for either impregnated zeolite at 425 C.
OSTI ID:
6839609
Journal Information:
Journal of Catalysis; (USA), Journal Name: Journal of Catalysis; (USA) Vol. 119:2; ISSN 0021-9517; ISSN JCTLA
Country of Publication:
United States
Language:
English