skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of adduct stereochemistry and hydrogen-bonding solvents on photoinduced charge transfer in a covalent benzo[a]pyrene diol epoxide-nucleoside adduct on picosecond time scales

Journal Article · · Journal of Physical Chemistry; (United States)
DOI:https://doi.org/10.1021/j100090a017· OSTI ID:6835191
 [1]; ;  [2]
  1. Univ. of Texas, Austin, TX (United States)
  2. New York Univ., NY (United States)

Photoinduced electron transfer occurs with different rate constants upon picosecond laser pulse excitation of the stereoisomeric (+)-trans- and (-)-cis-benzo[a]pyrene diol epoxide-N[sup 2]-deoxyguanosine covalently linked adducts (BPDE-N[sup 2]-dG, bond with 10S absolute configuration) in polar solvents (N,N[prime]-dimethylformamide (DMF), and the hydrogen-bonding liquids H[sub 2]O, D[sub 2]O, formamide (FA), and N-methylformamide (NMF)). In the case of (+)-trans-BPDE-dG in DMF, photoinduced electron transfer occurs in the normal Marcus region, from dG to the pyrenyl residue singlet with a rate constant k[sub s] = (9.1 [+-] 0.9) x 10[sup 9] s[sup [minus]1], which is followed by a slower recombination (k[sub r] = (1.8 + 0.5) x 10[sup 9] s[sup [minus]1]) in the inverted Marcus region. In the cis-stereoisomeric adduct, both rate constants are enhanced by a factor of approximately 5. The presence of the hydrogen-bonding network in NMF and FA exerts opposite effects on these rate constants, decreasing k[sub s] and increasing k[sub r] by factors of 2-5. In aqueous solutions these effects are even more pronounced, and radical ions are not observed since k[sub r] [much gt] k[sub s]. A kinetic isotope effect on the delay of the pyrenyl singlets in H[sub 2]O and D[sub 2]O (k[sub s](H[sub 2]O)/k[sub s](D[sub 2]O) = 1.3-1.5) suggests that a proton-coupled electron transfer mechanism may be operative in aqueous solutions. 51 refs., 10 figs., 2 tabs.

OSTI ID:
6835191
Journal Information:
Journal of Physical Chemistry; (United States), Vol. 98:39; ISSN 0022-3654
Country of Publication:
United States
Language:
English