skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kahuku kite wind study. I. Kahuka beach boundary layer

Technical Report ·
OSTI ID:6822665

In the coastal plain of Kahuku, Oahu, during August 1980 and February to April 1981, the boundary layer and the mechanism that creates it were investigated. Four sets of two automatically-recording tethered aerodynamically lifting anemometer (TALA) kites flying continuously at 100 and 300 ft, and conventional 30 ft instruments were used concurrently at four sites along a transect parallel to the prevailing trade winds. Hand-held short-term kite measurements were used to verify the data from the prototype automatic kites during the first survey. Because of surface heating and vertical mixing, a rapidly expanding boundary develops soon after sunrise. Other forces that modify the daytime air flow in the lower layers are: surface friction, local scale thermal wind, a sea breeze and mechanical forcing. The nighttime boundary is established through heat conduction from the surface air to the ground. This layer grows slowly and reaches only a few hundred feet in depth. Other mechanisms that modify the winds in and around the nighttime boundary layer include: confluence into the boundary layer, local scale thermal wind, land breeze-drainage winds, and friction. In the second survey, the boundary layer was neither as high nor as well-developed as in the first because the ground was saturated after the winter rains. The consequent latent heat exchange prevented extreme surface temperature fluctuation. The commonly-used wind profile law exponent was found to depend on speed in the lower 100 ft of the atmosphere above which the exponent is constant. Estimates of long-term speeds at some sites differed by up to four mph between the two surveys. This underlines the importance of surveying not only all major wind regimes but also under different surface conditions. Long term speed estimates for the sties are high enough to make the area probably profitable for wind power development.

Research Organization:
Hawaii Univ., Honolulu (USA). Dept. of Meteorology
DOE Contract Number:
FG03-77ET20184
OSTI ID:
6822665
Report Number(s):
UHMET-82-01; ON: DE83006403
Resource Relation:
Other Information: Portions are illegible in microfiche products
Country of Publication:
United States
Language:
English