skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of a poloidal divertor reversed field pinch

Technical Report ·
OSTI ID:6822267

Several attempts have been made to form a reversed field pinch (RFP) in a four-node, poloidal divertor configuration which positions the plasma far from a conducting wall. In this configuration, the plasma is localized within a magnetic separatrix formed by the combination of toroidal currents in the plasma and four, internal, conducting rings. These experiments were conducted on three devices: Tokapole II, the Wisconsin Levitated Octupole, and the modified Octupole with smaller conducting rings. Transient, RFP-like equilibria were obtained on Tokapole II and the Wisconsin Levitated Octupole. RFP-like equilibria with field reversal duration /approximately/1 msec were obtained in the small ring Octupole. None of these plasmas was sustained against resistive magnetic diffusion. Local, internal measurements of the magnetic field in Tokapole II plasmas indicated the plasma current and density were mostly confined to the region inside the magnetic separatrix. The sharp drop in plasma pressure near the separatrix generated a large diamagnetic current in that region. Large magnetic perturbations observed in the startup phase of these plasmas. On the small ring Octupole, the perturbation was measured to have a dominant poloidal mode number of m = 1 and toroidal mode numbers n /approximately/ /minus/5, i.e., internally resonant or nonresonant modes. This perturbation was stationary and was phase-locked to a magnetic field error. If the tenuous plasma region outside the separatrix is ''vacuum-like,'' then this behavior might represent current-driven instability owing to the lack of nearly, stabilizing boundary. Such instability is consistent with linear magnetohydrodynamic stability calculations and nonlinear simulations of a cylindrical REP plasma bounded by a large vacuum region and a distant conducting wall. 53 refs., 48 figs.

Research Organization:
Wisconsin Univ., Madison (USA). Plasma Physics Research
DOE Contract Number:
FG02-85ER53198
OSTI ID:
6822267
Report Number(s):
DOE/ER/53198-130; ON: DE89005498
Resource Relation:
Other Information: Thesis (Ph.D.). Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English