Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Application of radiocarbon analysis and receptor modeling to the source apportionment of PAHs (polycyclic aromatic hydrocarbons) in the atmosphere

Thesis/Dissertation ·
OSTI ID:6811631

The radiocarbon tracer technique was used to demonstrate that polycyclic aromatic hydrocarbons (PAHs) can be used for quantitative receptor modeling of air pollution. Fine-particle samples were collected during December, 1985, in Albuquerque, NM. Motor vehicles (fossil) and residential wood combustion (RWC, modern) were the major PAH-sources. For each sample, the PAH-fraction was solvent-extracted, isolated by liquid chromatography, and analyzed by GC-FID and GC-MS. The PAH-fractions from sixteen samples were analyzed for {sup 14}C by Accelerator Mass Spectrometry. Radiocarbon data were used to calculate the relative RWC contribution (f{sub RWC}) for samples analyzed for {sup 14}C. Normalized concentrations of a prospective motor vehicle tracer, benzo(ghi)perylene (BGP) had a strong, negative correlation with f{sub RWC}. Normalized BGP concentrations were used to apportion sources for samples not analyzed for {sup 14}C. Multiple Linear Regression (MLR) vs. ADCS and BGP was used to estimate source profiles for use in Target Factor Analysis (TFA). Profiles predicted by TFA were used in Chemical Mass Balances (CMBs). For non-volatile, stable PAHs, agreement between observed and predicted concentrations was excellent. The worst fits were observed for the most volatile PAHs and for coronene. The total RWC contributions predicted by CMBs correlated well with the radiocarbon data.

Research Organization:
Maryland Univ., College Park, MD (USA)
OSTI ID:
6811631
Country of Publication:
United States
Language:
English