skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel

Journal Article · · Journal of Medicinal Chemistry; (USA)
DOI:https://doi.org/10.1021/jm00167a005· OSTI ID:6810027

Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of the nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.

OSTI ID:
6810027
Journal Information:
Journal of Medicinal Chemistry; (USA), Vol. 33:5; ISSN 0022-2623
Country of Publication:
United States
Language:
English