Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide

Thesis/Dissertation ·
OSTI ID:6796305

Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to {sup 125}I-labeled albumin, which was abolished by 10{sup {minus}8}-10{sup {minus}6}M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods.

Research Organization:
Medical Univ. of South Carolina, Charleston, SC (USA)
OSTI ID:
6796305
Country of Publication:
United States
Language:
English