Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Collimator performance evaluation by Monte-Carlo techniques

Conference · · J. Nucl. Med.; (United States)
OSTI ID:6793784
A computer program using Monte-Carlo techniques has been developed to simulate gamma camera collimator performance. Input data include hole length, septum thickness, hole size and shape, collimator material, source characteristics, source to collimator distance and medium, radiation energy, total events number. Agreement between Monte-Carlo simulations and experimental measurements was found for commercial hexagonal parallel hole collimators in terms of septal penetration, transfer function and sensitivity. The method was then used to rationalize collimator design for tomographic brain studies. A radius of ration of 15 cm was assumed. By keeping constant resolution at 15 cm (FWHM = 1.3.cm), SPECT response to a point source was obtained in scattering medium for three theoretical collimators. Sensitivity was maximized in the first collimator, uniformity of resolution response in the third, while the second represented a trade-off between the two. The high sensitivity design may be superior in the hot spot and/or low activity situation, while for distributed sources of high activity an uniform resolution response should be preferred. The method can be used to personalize collimator design to different clinical needs in SPECT.
Research Organization:
Istituto San Raffaele
OSTI ID:
6793784
Report Number(s):
CONF-850611-
Conference Information:
Journal Name: J. Nucl. Med.; (United States) Journal Volume: 26:5
Country of Publication:
United States
Language:
English