skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ecophysiological adaptations of anaerobic bacteria to low pH: analysis of anaerobic digestion in acidic bog sediments. [Lactobacillus; Clostridium; Sarcina ventriculi]

Journal Article · · Appl. Environ. Microbiol.; (United States)
OSTI ID:6791685

The dynamics of anaerobic digestion were examined in the low-pH sediments of Crystal Bog in Wisconsin. The sediments (pH 4.9) contained 71% organic matter and the following concentrations of dissolved gases (micromoles per liter):CO/sub 2/, 1140; CH/sub 4/, 490; and H/sub 2/, 0.01. The rate of methane production was 6.2 ..mu..mol/liter of sediment per h, which is slower than eutrophic, neutral sediments. Microbial metabolic processes displayed the following pH optima: hydrolysis reactions, between 4.2 and 5.6; aceticlastic methanogenesis, 5.2; and hydrogen-consuming reactions, 5.6. The turnover rate constants for key intermediary metabolites were (h/sup -1/): glucose, 1.10; lactate, 0.277; acetate, 0.118; and ethanol, 0.089. The populations of anaerobes were low, with hydrolytic groups (10/sup 6//ml) several orders of magnitude higher than methanogens (10/sup 2//ml). The addition of carbon electron donors to the sediment resulted in the accumulation of hydrogen, whereas the addition of hydrogen resulted in the accumulation of fatty acids and the inhibition of hydrogen-producing acetogenic reactions. Strains of Lactobacillus, Clostridium, and Sarcina ventriculi were isolated from the bog, and their physiological attributes were characterized in relation to hydrolytic process functions in the sediments. The present studies provide evidence that the pH present in the bog sediments alter anaerobic digestion processes s, that total biocatalytic activity is lower bu the general carbon and electron flow pathways are similar to those of neutral anoxic sediments.

Research Organization:
Univ. of Wisconsin, Madison
OSTI ID:
6791685
Journal Information:
Appl. Environ. Microbiol.; (United States), Vol. 53:1
Country of Publication:
United States
Language:
English