Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Selective incorporation of various C-22 polyunsaturated fatty acids in Ehrlich ascites tumor cells

Journal Article · · J. Lipid Res.; (United States)
OSTI ID:6791359
Three /sup 14/C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-(/sup 14/C)docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-(/sup 14/C)docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-(/sup 14/C)docosahexaenoic acid (22:6(n-3)), were compared with (/sup 3/H)arachidonic acid (20:4(n-6) and (14C)linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids.
Research Organization:
Teikyo Univ., Kanagawa, Japan
OSTI ID:
6791359
Journal Information:
J. Lipid Res.; (United States), Journal Name: J. Lipid Res.; (United States) Vol. 11; ISSN JLPRA
Country of Publication:
United States
Language:
English