Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Bifurcation phenomena near homoclinic systems: A two-parameters analysis

Journal Article · · J. Stat. Phys.; (United States)
DOI:https://doi.org/10.1007/BF01010829· OSTI ID:6791115

The bifurcations of periodic orbits in a class of autonomous three-variable, nonlinear-differential-equation systems possessing a homoclinic orbit associated with a saddle focus with eigenvalues (rho +- i..omega.., lambda), where Vertical Barrho/lambdaVertical Bar<1 (Sil'nikov's condition), are studied in a two-parameters space. The perturbed homoclinic systems undergo a countable set of tangent bifurcation followed by period-doubling bifurcations leading to a periodic orbits which may be attractors if Vertical Barlambda/lVertical Bar<1/2. The accumulation rate of the critical parameter values at the homoclinic system is exp(-2..pi..Vertical Barrho/..omega..Vertical Bar). A global mechanism for the onset of homoclinicity in strongly contractive flows is analyzed. Cusp bifurcations with bistability and hysteresis phenomena exist locally near the onset of homoclinicity. A countable set of these cusp bifurcations with scaling properties related to the eigenvalues rho +- i..omega.. of the stationary state are shown to occur in infinitely contractive flows. In the two-parameter space, the periodic orbit attractor domain exhibits a spiral structure globally, around the set of homoclinic systems, in which all the different periodic orbits are continuously connected.

Research Organization:
Faculte des Sciences, Universite Libre de Bruxelles, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium
DOE Contract Number:
AS05-81ER10947
OSTI ID:
6791115
Journal Information:
J. Stat. Phys.; (United States), Journal Name: J. Stat. Phys.; (United States) Vol. 35:3; ISSN JSTPB
Country of Publication:
United States
Language:
English

Similar Records

Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons
Journal Article · Tue Feb 29 23:00:00 EST 2000 · Chaos (Woodbury, N. Y.) · OSTI ID:20215593

Homoclinic orbits and mixed-mode oscillations in far-from-equilibrium systems
Journal Article · Wed Jul 01 00:00:00 EDT 1987 · J. Stat. Phys.; (United States) · OSTI ID:6094465

What can we learn from homoclinic orbits in chaotic dynamics
Journal Article · Wed Jun 01 00:00:00 EDT 1983 · J. Stat. Phys.; (United States) · OSTI ID:5806135