skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxidation of MoSi{sub 2}/SiC nanolayered composite

Journal Article · · Journal of Materials Research
 [1]; ;  [2]
  1. European Commission, Joint Research Centre, Institute for Advanced Materials, I-2120 Ispra (Italy)
  2. Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States)

The oxidation behavior of a nanolayered MoSi{sub 2}/SiC composite material was determined at the temperature range of 400{endash}900{degree}C in wet oxidation conditions. The samples were produced in the form of thin films using a sputtering technique from two different sources, and a rotating substrate holder, onto silicon single crystals and low carbon steel. For comparison, the oxidations of both constituents, MoSi{sub 2} and SiC, produced with the same sputtering technique, were measured separately. The microstructure of the MoSi{sub 2}/SiC samples were determined with high resolution transmission electron microscopy (HRTEM), and the composition of the sputtered samples was measured using backscattering (BS) of protons. For quantitative determination of oxidation, the nuclear reaction {sup 16}O(d,p){sup 17}O was utilized. Oxide layers were also analyzed using a secondary ion mass spectrometry (SIMS) and the appearance of the oxidized surface with a scanning electron microscopy (SEM). As expected, the SiC films had both the lowest initial oxidation and steady state oxidation rate. The results show that the oxidation behavior of the MoSi{sub 2}/SiC nanolayered composite material differs from that of both its constituents and involves a degradation mechanism of its own, resulting in the highest oxidation during the initial phase of the oxidation. A steady-state oxidation rate was observed after the initial transient phase to be the highest for the metastable C40 structure of the single MoSi{sub 2} layer. The oxidation rate of the nanolayered structure was retarded by the SiC layers. No signs of pest disintegration were observed on either of the MoSi{sub 2} containing coatings during the steady-state phase of the oxidation at 500{degree}C up to 40 h. Our results show that the oxidation of nanolayered structures can be only in part explained by the oxidation behavior of the constituents and that during the steady-state oxidation of the nanolayered structure the oxidation rate is largely determined by the constituent with the lowest oxidation rate and by the layered structure. {copyright} {ital 1998 Materials Research Society.}

OSTI ID:
678726
Journal Information:
Journal of Materials Research, Vol. 13, Issue 4; Other Information: PBD: Apr 1998
Country of Publication:
United States
Language:
English