Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Measurements of longitudinal phase space in the SLC linac

Conference ·
OSTI ID:6778657
In the Stanford Linear Collider the beam leaves a damping ring and then enters the Ring-to-Linac (RTL) transfer line. In the RTL it is compressed in length by a factor of 10 by means of an rf section, with which a longitudinally correlated energy variation is induced in the beam, and a following beam line which has non-zero momentum compaction. The compressed beam then enters the linac proper. In this paper we describe three measurements of longitudinal properties of the beam in the SLC linac. We present measurements of single bunch beam loading, of the energy spectrum at the end of the linac, and of the linac bunch length. Since the results of all three measurements depend on the beam's longitudinal charge distribution in the linac they, in turn, also depend on the bunch lengthening that occurs in the damping rings, as well as on the behavior of the compressor. The results of the first two measurements, in addition, depend critically on the strength of the longitudinal wakefields in the linac. The results of these three measurements are compared with simulations. For these calculations, at any given current, the potential well distortion in the damping ring is first computed. The compression process is then simulated to obtain the longitudinal charge distribution in the linac. For the first two measurements this distribution is then convolved with the calculated longitudinal wake function of the SLAC linac in order to obtain the induced voltage. Finally, the induced voltage is combined with the effect of the linac rf wave to give the final energy spectrum. 8 refs., 5 figs.
Research Organization:
Stanford Linear Accelerator Center, Menlo Park, CA (USA)
Sponsoring Organization:
DOE/ER
DOE Contract Number:
AC03-76SF00515
OSTI ID:
6778657
Report Number(s):
SLAC-PUB-5255; CONF-900603--15; ON: DE90013574
Country of Publication:
United States
Language:
English