Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Upper crustal structure of the Yellowstone Caldera from seismic delay time analyses and gravity correlations

Journal Article · · J. Geophys. Res.; (United States)

The 1978 Yellowstone-Snake River Plain seismic experiment provided detailed refraction data that were recorded across a two-dimensional array of seismographs in Yellowstone National Park. A delay time analysis was applied to 173 crystalline basement P/sub g/ arrivals from these data to determine the three-dimensional distribution of velocities and the layer configuration of the upper crust beneath the Yellowstone caldera. The P wave velocity structure of the caldera is characterized by a surface layer of combined sediments and rhyolite flows, averaging 2.8 km/s, that range in thickness from 1.5 to 2.0 km. Adjacent to the caldera, the crystalline upper crustal layer has a velocity of 6.05 +- 0.01 km/s, but this layer decreases by 6% to 5.70 km/s beneath the caldera and extends northeast 15 km beyond the caldera. Smaller zones of very low P velocity, 4.0 km/s, a 30% velocity reduction compared to the 6.05 km/s layer, occur in the upper crust beneath the northeastern caldera rim and beneath the southwest caldera in the vicinity of the Upper and Midway Geyser basins. A three-dimensional gravity interpretation based upon densities derived from the seismic model suggests that the regional gravity low of -60 mGal over the caldera correlates directly with (1) the surface layer of combined sediments and rhyolite flows, (2) the low-velocity, 5.7-km/s, upper crustal layer, and (3) the 4.0-km/s low-velocity zone beneath the northeastern caldera rim. An interpretation of the seismic velocities and densities, based on experimental data and theoretical models is made.

Research Organization:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112
OSTI ID:
6771272
Journal Information:
J. Geophys. Res.; (United States), Journal Name: J. Geophys. Res.; (United States) Vol. 87:B4; ISSN JGREA
Country of Publication:
United States
Language:
English