skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The impact of summer heat islands on cooling energy consumption and CO{sub 2} emissions

Conference ·
OSTI ID:674927

It has been well documented that summer heat islands increase the demand for air conditioning. Several studies have suggested developing guidelines to mitigate this negative effect, on both micro- and meso-scales. Reducing summer heat islands saves cooling energy, reduces peak demand, and reduces the emission of CO{sub 2} from electric power plants. This paper summarizes some of the efforts to quantify the effects of techniques to reduce heat islands. In particular, the authors summarize simulations they have made on the effects of plating trees and switching to light colored surfaces in cities. The results indicate that these techniques effectively reduce building cooling loads and peak power in selected US cities, and are the cheapest way to save energy and reduce CO{sub 2} emissions. This paper compares the economics of technologies to mitigate summer heat islands with other types of conservation measures. The authors estimate the cost of energy conserved by planting trees and recoating surfaces on a national level and compare it with the cost of energy conserved by increasing efficiencies in electrical appliances and cars. Early results indicate that the cost of energy saved by controlling heat islands is less than 1{cents}/kWh, more attractive than efficient electric appliances ({approximately} 2{cents}/kWh), and far more attractive than new electric supplies ({approximately}10{cents}/kWh). In transportation, the cost of conserving a gallon of gasoline, though far more attractive than buying gasoline at current prices, is again more expensive than controlling heat islands. By accounting for the carbon content of the fuels used for power generation and transportation, the authors restate these comparisons in terms of cents per avoided pound of carbon emitted as CO{sub 2}. The results show that the cost of avoided CO{sub 2} from planting trees/increasing albedo is about 0.3--1.3{cents}/lb. of carbon; for buying efficient electric appliances, 2.5{cents}/lb. of carbon; and for efficient cars, 10{cents}/lb. of carbon.

Research Organization:
Lawrence Berkeley National Lab., Environmental Energy Technologies Div., CA (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
674927
Report Number(s):
LBL-25179; CONF-9708168-; ON: DE97054241; TRN: AHC29820%%391
Resource Relation:
Conference: ACEEE summer study on energy efficiency in buildings, Pacific Grove, CA (United States), 28 Aug - 3 Sep 1997; Other Information: PBD: Aug 1988
Country of Publication:
United States
Language:
English