skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling two-dimensional detonations with detonation shock dynamics

Conference ·
DOI:https://doi.org/10.1063/1.857349· OSTI ID:6748197

In any explosive device, the chemical reaction of the explosive takes place in a thin zone just behind the shock front. The finite size of the reaction zone is responsible for: the pressure generated by the explosive being less near the boundaries, for the detonation velocity being lower near a boundary than away from it, and for the detonation velocity being lower for a divergent wave than for a plane wave. In computer models that are used for engineering design calculations, the simplest treatment of the explosive reaction zone is to ignore it completely. Most explosive modeling is still done this way. The neglected effects are small when the reaction zone is very much smaller than the explosive's physical dimensions. When the ratio of the explosive's detonation reaction-zone length to a representative system dimension is of the order of 1/100, neglecting the reaction zone is not adequate. An obvious solution is to model the reaction zone in full detail. At present, there is not sufficient computer power to do so economically. Recently we have developed an alternative to this standard approach. By transforming the governing equations to the proper intrinsic-coordinate frame, we have simplified the analysis of the two-dimensional reaction-zone problem. When the radius of curvature of the detonation shock is large compared to the reaction-zone length, the calculation of the two-dimensional reaction zone can be reduced to a sequence of one-dimensional problems. 9 refs., 5 figs.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
6748197
Report Number(s):
LA-UR-88-2906; CONF-8805194-2; ON: DE89000383
Resource Relation:
Journal Volume: 1; Journal Issue: 7; Conference: 6. Army conference on applied mathematics and computing, Boulder, CO, USA, 31 May 1988; Other Information: Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English