skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tectonic synthesis of the northern Arabian platform

Abstract

The creation and destruction of Tethys oceans from the early Mesozoic to the present has created a complex suture zone along the Zagros/Bitlus trend. The fundamental interactions are between the Arabian and Euasian plates, but several microplates trapped between the major plates further complicate the tectonic fabric of the region. On the west, the Arabian plate slides past the African plate and the Sinai microplate along the Levant fault. The Palmyrides are related to a bend in this plate boundary and are not an offset extension of the Syrian arc. As Arabia penetrates Eurasia the Anatolian block is escaping to the west along the northern (right-lateral) and eastern (left-lateral) faults. Convergence of the Eurasian and Arabian plates resulted in ophiolite abduction (Late Cretaceous), followed by continent-continent collision (Miocene to present). The zone of collision is marked by the Bitlis-Zagrosa suture. Structural features associated with the collision include overthrusting, impactogens, and complexly folded and faulted mountain systems. Intensity and complexity of structuring decreases southward into open long-wavelength folds on the Arabian Platform. The fortuitous combination of rich source rocks, abundant reservoir rocks with primary and fracture porosity, and numerous trapping structures make this an extraordinary prolific hydrocarbon province. A structural andmore » lithologic interpretation of 53 contiguous Landsat Multispectral Scanner scenes covering all of Syria, Iraq, and Kuwait, and portions of Turkey, Iran, Jordan, Lebanon, and Saudi Arabia has provided insights into the tectonic history of this area and its hydrocarbon accumulation.« less

Authors:
; ; ; ;  [1]; ;  [2];  [3]
  1. (Earth Satellite Corp., Chevy Chase, MD (USA))
  2. (Dolan and Associates, Richmond (England))
  3. (Petroleum Geological Analysis, Ltd., Reading (England))
Publication Date:
OSTI Identifier:
6744915
Alternate Identifier(s):
OSTI ID: 6744915
Report Number(s):
CONF-900605--
Journal ID: ISSN 0149-1423; CODEN: AABUD
Resource Type:
Conference
Resource Relation:
Journal Name: AAPG Bulletin (American Association of Petroleum Geologists); (USA); Journal Volume: 74:5; Conference: Annual convention and exposition of the American Association of Petroleum Geologists, San Francisco, CA (USA), 3-6 Jun 1990
Country of Publication:
United States
Language:
English
Subject:
02 PETROLEUM; 58 GEOSCIENCES; SAUDI ARABIA; PLATE TECTONICS; CRETACEOUS PERIOD; GEOLOGIC HISTORY; GEOLOGIC TRAPS; IRAN; IRAQ; JORDAN; KUWAIT; LANDSAT SATELLITES; LEBANON; LITHOLOGY; SYRIA; TERTIARY PERIOD; TURKEY; ASIA; CENOZOIC ERA; DEVELOPING COUNTRIES; GEOLOGIC AGES; MESOZOIC ERA; MIDDLE EAST; SATELLITES; TECTONICS 020200* -- Petroleum-- Reserves, Geology, & Exploration; 580000 -- Geosciences

Citation Formats

Everett, J.R., Russell, O.R., Stasxkowski, R.J., Loyd, S.P., Tabbutt, V.M., Dolan, P., Stein, A., and Scott, J. Tectonic synthesis of the northern Arabian platform. United States: N. p., 1990. Web.
Everett, J.R., Russell, O.R., Stasxkowski, R.J., Loyd, S.P., Tabbutt, V.M., Dolan, P., Stein, A., & Scott, J. Tectonic synthesis of the northern Arabian platform. United States.
Everett, J.R., Russell, O.R., Stasxkowski, R.J., Loyd, S.P., Tabbutt, V.M., Dolan, P., Stein, A., and Scott, J. Tue . "Tectonic synthesis of the northern Arabian platform". United States. doi:.
@article{osti_6744915,
title = {Tectonic synthesis of the northern Arabian platform},
author = {Everett, J.R. and Russell, O.R. and Stasxkowski, R.J. and Loyd, S.P. and Tabbutt, V.M. and Dolan, P. and Stein, A. and Scott, J.},
abstractNote = {The creation and destruction of Tethys oceans from the early Mesozoic to the present has created a complex suture zone along the Zagros/Bitlus trend. The fundamental interactions are between the Arabian and Euasian plates, but several microplates trapped between the major plates further complicate the tectonic fabric of the region. On the west, the Arabian plate slides past the African plate and the Sinai microplate along the Levant fault. The Palmyrides are related to a bend in this plate boundary and are not an offset extension of the Syrian arc. As Arabia penetrates Eurasia the Anatolian block is escaping to the west along the northern (right-lateral) and eastern (left-lateral) faults. Convergence of the Eurasian and Arabian plates resulted in ophiolite abduction (Late Cretaceous), followed by continent-continent collision (Miocene to present). The zone of collision is marked by the Bitlis-Zagrosa suture. Structural features associated with the collision include overthrusting, impactogens, and complexly folded and faulted mountain systems. Intensity and complexity of structuring decreases southward into open long-wavelength folds on the Arabian Platform. The fortuitous combination of rich source rocks, abundant reservoir rocks with primary and fracture porosity, and numerous trapping structures make this an extraordinary prolific hydrocarbon province. A structural and lithologic interpretation of 53 contiguous Landsat Multispectral Scanner scenes covering all of Syria, Iraq, and Kuwait, and portions of Turkey, Iran, Jordan, Lebanon, and Saudi Arabia has provided insights into the tectonic history of this area and its hydrocarbon accumulation.},
doi = {},
journal = {AAPG Bulletin (American Association of Petroleum Geologists); (USA)},
number = ,
volume = 74:5,
place = {United States},
year = {Tue May 01 00:00:00 EDT 1990},
month = {Tue May 01 00:00:00 EDT 1990}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Analysis of available geological and geophysical data within Syria has allowed for further understanding of the geologic history of the northern Arabian platform from Proterozoic to present. Elements of the history involve: Proterozoic convergence and suturing of at least two distinct microplates, minor Cambrian extension and associated magmatism, development of a failed intracratonic rift in the early Mesozoic, and inversion of that sedimentary trough that began in the Late Cretaceous. The diverse Phanerozoic tectonic features in Syria may be due to reactivation along older zones of weaknesses in the northern Arabian plate; the proposed Proterozoic suture zone lies along strikemore » of the present day Palmyride intracratonic mountain belt. The construction of isopach maps of the Ordovician through Quaternary sections in Syria based on regional well control and seismic reflection data demonstrates regional structural-stratigraphic relationships. Basement deformation maps, derived from superposition of the formation isopachs, indicate the transformation of an east-directed Paleozoic margin into a well-directed Mesozoic margin (Levantine margin). Contemporaneous with this margin transformation was the development of an east-northeast-trending rift (Palmyride trough) toward the craton interior. Finally, Cenozoic eastward tilting of the Arabian plate, associated with loading of the plate along the Mesopotamian foredeep and uplift of the plate along the Red Sea margin is observed across the southern Arabian platform. Eastward tilting is also observed across the southern Arabian platform. Eastward tilting is also observed on the northern platform with respect to the top of the crystalline basement, indicating a similarity in response of the entire Arabian plate to loading and uplift along its margins.« less
  • The major tectonic elements of northern Bulgaria are the east-west-trending Balkan-Forebalkan fold belt and the Moesian platform. Moderate hydrocarbon exploration potential exists in trapping geometries generated during the tectonic evolution of the region coupled with reservoir/seal pairs and source rocks within Mesozoic strata. The tectonic evolution of the region includes Early Triassic to Early Jurassic intracratonic rifting followed by multiphase compression that contracted the rift basin and produced a north vergent fold and thrust belt along the southern margin of the stable Moesian platform. Compression began during the Early Cretaceous, continued during the Paleocene, and concluded during the middle Eocene.more » Trap types generated during the tectonic evolution include normal fault-bounded rotated blocks in the autochthonous section and elongate, asymmetric anticlines in the allochthonous section. Triassic to Upper Jurassic Marine facies were deposited in an east-west-trending rift. Sediments deposited in a shallow foredeep, which evolved during Lower cretaceous compression, overlay the rift sequence. The Early Mesozoic rift sequence provides the depositional settings for Middle Triassic and lower Middle Jurassic source rock shales and sandstone/carbonate reservoirs ranging from Middle Triassic to Lower Cretaceous. Carbonate reservoirs generally are porous dolomites with intercrystalline, moldic, and vugular pore types interbedded with nonporous limestones. Clastic reservoirs are quartz-rich sandstones with pore types that are reduced intergranular, dissolution, and microporosity. These heterogeneous reservoir targets exhibit poor to good reservoir characteristics and are overlain with sealing lithologies of variable thicknesses.« less
  • Synthesis of available geological and geophysical data in the Syrian Arab Republic permits a descriptive account of the pre-Cenozoic geologic history of the northern Arabian platform. The northern Arabian platform appears to be a composite plate similar up to that interpreted in the rocks of the Arabian shield. The structural and stratigraphic relationships of the Paleozoic and Mesozoic sedimentary sections in Syria record the transformation of an eastward-facing Gondwana passive margin in the early Paleozoic into a westward-facing Levantine margin in the Mesozoic, at which time the northern platform was closely associated with the creation of the eastern Mediterranean basin.more » Timing of the margin transformation is inferred from the orientation and thickness variations of Lower Triassic rocks, but the transformation may have initiated as early as the Permian. The diversity and timing of geological features in Syria suggest that the northern Arabian platform did not behave as a rigid plate throughout its geological history. The present-day Palmyride mountain belt, located within the northern Arabian platform in Syria and initiated in the early Mesozoic as a northeast-trending rift nearly perpendicular to the Levantine margin, subsequently was inverted in the Cenozoic by transpression. The location of the rift may be associated with the reactivation of a zone of crustal weakness, i.e., a Proterozoic suture zone previously proposed from modeling of Bouguer gravity data. Thus, the northern and southern parts of the Arabian platform are similar in their respective geologic histories during the Proterozoic and Paleozoic; however, the northern Arabian platform was greatly affected by Mesozoic rifting and the creation of the eastern Mediterranean basin during the Mesozoic. 13 figs.« less
  • This study examines the crustal structure of the Palmyrides and the northern Arabian platform in Syria by two- and three-dimensional modeling of the Bouguer gravity anomalies. Results of the gravity modeling indicate that (1) western Syria is composed of at least two different crustal blocks, (2) the southern crustal block is penetrated by a series of crustal-scale, high-density intrusive complexes, and (3) short-wavelength gravity anomalies in the southwest part of the mountain belt are clearly related to basement structure. The crustal thickness in Syria, as modeled on the gravity profiles, is approximately 40{plus minus}4 km, which is similar to crustalmore » thicknesses interpreted from refraction data in Jordan and Saudi Arabia. The different crustal blocks and large-scale mafic intrusions are best explained, though not uniquely, by Proterozoic convergence and suturing and early Paleozoic rifting, as interpreted in the exposed rocks of the Arabian shield. These two processes, combined with documented Mesozoic rifting and Cenozoic transpression, compose the crustal evolution of the northern Arabian platform beneath Syria.« less
  • Arabian Platform sediments consist of major sequences separated by tectonically controlled unconformities. These tectonic events, at the plate margins, controlled the orientation and distribution of sedimentary facies on the stable platform. Eustacy and subsidence were the principle controls on the actual facies that formed.