skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids

Journal Article · · Neurochem. Res.; (United States)
DOI:https://doi.org/10.1007/BF00967661· OSTI ID:6743317

Specific binding of L-(/sup 3/H)glutamate ((/sup 3/H)Glu) and L(/sup 3/H)Asp) to cerebellar membranes represented a time-, temperature-, pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K/sub off//K/sub on/ . K/sub d/) for (/sup 3/H)Glu binding to this fraction indicated high-affinity (433 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for (/sup 3/H)Glu and (/sup 3/H)Asp as receptors with differential pharmacological specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37 degrees C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents and L-Glu (50-1000 microM) provided protection against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8-12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8-12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously.

Research Organization:
Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore
OSTI ID:
6743317
Journal Information:
Neurochem. Res.; (United States), Vol. 9:1
Country of Publication:
United States
Language:
English