Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Experimental results of core-concrete interactions using molten steel with zirconium

Technical Report ·
DOI:https://doi.org/10.2172/6738150· OSTI ID:6738150

Four inductively sustained experiments, QT-D, QT-E, SURC-3, and SURC-3A, were performed in order to investigate the additional effects of zirconium metal oxidation on core debris-concrete interactions using molten stainless steel as the core debris simulant. The QT-D experiment ablated 18 cm of concrete axially during 50 minutes of interaction on limestone-common sand concrete using a 10 kg charge of 304 stainless steel to which 2 kg of zirconium metal was added subsequent to the onset of erosion. The QT-E experiment ablated 10 cm of limestone-common sand concrete axially and 10 cm radially during 35 minutes of sustained interaction using 50 kg of stainless steel and 10 kg of zirconium. The SURC-3 experiment had a 45 kg charge of stainless steel to which 1.1 kg of zirconium was subsequently added. SURC-3 axially eroded 33 cm of limestone concrete during two hours of interaction. The fourth experiment, SURC-3A, eroded 25 cm of limestone concrete axially and 9 cm radially during 90 minutes of sustained interaction. It utilized 40 kg of stainless steel and 2.2 kg of added zirconium as the charge material. All four experiments showed in a large increase in erosion rate, gas production, and aerosol release following the addition of Zr metal to the melt. In the SURC-3 and SURC-3A tests the measured erosion rates increased from 14 cm/hr to 27 cm/hr, gas release increased from 50 slpm to 100 slpm, and aerosol release increased from .02 q/sec to .04 q/sec. The effluent gas was composed of 80% CO, 10% CO{sub 2}, and 2% H{sub 2} before Zr addition and 92% CO, 4% CO{sub 2}, 4% H{sub 2} during the Zr interactions which lasted 10--20 minutes. Addition measurements indicated that the melt pool temperature ranged from 1600{degree}C--1800{degree} and that the aerosols produced were comprised primarily of Te and Fe oxides. 21 refs., 120 figs., 51 tabs.

Research Organization:
Nuclear Regulatory Commission, Washington, DC (USA). Div. of Systems Research; Sandia National Labs., Albuquerque, NM (USA)
Sponsoring Organization:
NRC
DOE Contract Number:
AC04-76DP00789
OSTI ID:
6738150
Report Number(s):
NUREG/CR-4794; SAND--86-2638; ON: TI90015004
Country of Publication:
United States
Language:
English