Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Susceptibility of Inconel X-750 to stress corrosion cracking

Thesis/Dissertation ·
OSTI ID:6717990
High strength, age hardenable Ni-base superalloy Inconel X-750 in susceptible to severe intergranular stress corrosion cracking (IGSCC) when used in the triple heat treated condition. In this research, constant strain rate technique was employed to evaluate the stress corrosion cracking susceptibility of alloy X-750 under simulated pressurized water reactor conditions in a nuclear power plant using an automated autoclave system at 8 x 10/sup 6/ N/m/sup 2/ pressure and 289/sup 0/C temperature. The alloy produced via ESR and VAR processing routes containing .004% and .011% sulfur, respectively, were solution annealed at 1075 and 1240/sup 0/C for 2 hours and water quenched followed by aging in the 704 to 871/sup 0/C temperature range up to 200 hours and cooled in air as well as the furnace. Complete grain boundary chemistry and precipitation morphology was studied, supported by observations made using Charpy impact and modified Huey tests. Results showed Inconel X-750 processed through electroslag refining, solution annealed at 1240/sup 0/C for 2 hours and water quenched followed by aging at 871/sup 0/C for 200 hours and furnace cooling, provides the best combination of strength, ductility, and resistance to SCC.
Research Organization:
Minnesota Univ., Minneapolis (USA)
OSTI ID:
6717990
Country of Publication:
United States
Language:
English