skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Possible utilization of flue-gas desulfurization gypsum and fly ash for citrus production: Evaluation of crop growth response

Journal Article · · Waste Management; (United States)
 [1]
  1. Univ. of Florida, Lake Alfred, FL (United States). Citrus Research and Education Center

The application of industrial by-products to agricultural land has been a topic of considerable interest during recent years. For the industries, this is an attractive avenue to utilize the by-products rather than land filling. Agriculturists/horticulturists are faced with a new challenge to evaluate the potential advantages of this practice in terms of crop growth, production, and quality as well as effects of such practices on environmental quality. Fly ash and flue-gas desulfurization (FGD) gypsum are by-products produced from coal-fired electric power generation plants. There is a growing interest in evaluation of potential benefits of land application of coal combustion by products mixed with organic by-products. The objective of this study was to investigate the effects of application of FGD gypsum, fly ash or chicken manure,, or application of the former two in combination with the latter, on soil properties as well as on growth and mineral nutrition of Cleopatra mandarin and Swingle citrumelo rootstock seedlings grown on a Myakka sand. The growth of seedlings of either rootstock improved significantly in soils amended with either FGD gypsum, fly ash, or chicken manure, individually or in combination of either by-product with chicken manure. However, the ranking of various amendments in relation to growth response differed between the two rootstocks. The combined application of all three amendments decreased the growth of both rootstock seedlings significantly as compared to that of seedlings in unamended soil. The application of either FGD gypsum, fly ash, or chicken manure each at 2 g/kg soil increased the concentration of Ca, Ca and K, and Ca and P in the leaves of seedlings, respectively.

OSTI ID:
6695556
Journal Information:
Waste Management; (United States), Vol. 14:7; ISSN 0956-053X
Country of Publication:
United States
Language:
English