Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Quantum statistics of charged particle systems

Book ·
OSTI ID:6691776

This book presents information on the following topics: basic concepts for Coulomb systems; quantum statistics of many-particle systems; the method of Green's functions in quantum statistics; the binary collision approximation; application of the Green's function technique to Coulomb systems; many-particle complexes and T-matrices; cluster formation and the chemical picture; single particle excitations; equilibrium properties in classical and quasiclassical approximation; the one-component plasma model; the pair distribution function; quantum-statistical calculations of equilibrium properties; the mass action law; electron-hole plasmas; Pade approximations; hydrogen plasmas; the two-fluid model; transport properties; linear response theory; evaluation of collision integrals using Green's functions; results for a hydrogen plasma; self-energy and Debye-Onsager relaxation effects; hopping conductivity; Green's function approach to optical properties; many-body theory of absorption spectra; Doppler broadening; explicit expressions for shift and broadening; shift of spectral lines in dense hydrogen plasmas; and estimation of the shift and broadening of spectral lines for an argon plasma.

OSTI ID:
6691776
Country of Publication:
United States
Language:
English