The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X^2 1 X^2 X 0 X^2 1 0 1 X 1 X^2 X 0 1 X 1
0 X 0 0 0 0 0 0 0 X X^2+X X X X^2+X X X^2 X^2 X^2+X X 0 0 X X^2+X X^2 X X X^2+X X X^2+X X X^2+X 0 0
0 0 X 0 0 0 X X^2+X X 0 0 0 X X X^2+X X^2 X X X^2 X X X X^2 0 X^2 X^2+X X^2 X X^2+X X^2+X X^2+X X 0
0 0 0 X 0 X X X^2+X 0 X X X^2 0 X^2 X^2+X X 0 X X^2 X X^2+X X^2+X X^2+X X X 0 0 X X X^2+X X^2+X X 0
0 0 0 0 X X 0 X^2+X X X^2 X^2+X X^2+X 0 X^2+X X X^2+X X^2+X 0 X X^2 X X 0 0 X X X^2 0 0 0 X^2+X X^2 0
0 0 0 0 0 X^2 0 0 0 0 0 0 X^2 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 X^2 X^2 0 0 X^2 0 X^2 X^2 X^2 0
0 0 0 0 0 0 X^2 0 X^2 X^2 0 X^2 0 0 X^2 X^2 X^2 X^2 0 0 X^2 0 0 X^2 X^2 0 0 X^2 0 0 0 0 X^2
0 0 0 0 0 0 0 X^2 X^2 0 X^2 X^2 X^2 X^2 0 0 X^2 X^2 X^2 0 0 0 0 X^2 X^2 0 X^2 0 0 0 X^2 X^2 X^2
generates a code of length 33 over Z2[X]/(X^3) who´s minimum homogenous weight is 24.
Homogenous weight enumerator: w(x)=1x^0+87x^24+176x^25+224x^26+398x^27+539x^28+916x^29+1246x^30+1556x^31+1981x^32+2016x^33+2048x^34+1648x^35+1250x^36+1000x^37+494x^38+332x^39+219x^40+112x^41+80x^42+34x^43+19x^44+4x^45+2x^46+2x^54
The gray image is a linear code over GF(2) with n=132, k=14 and d=48.
This code was found by Heurico 1.16 in 7.36 seconds.