Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Droplet phase characteristics in liquid-dominated steam--water nozzle flow

Technical Report ·
DOI:https://doi.org/10.2172/6665082· OSTI ID:6665082

An experimental study was undertaken to determine the droplet size distribution, the droplet spatial distribution and the mean droplet velocity in low-quality, steam-water flow from a rectangular cross-section, converging-diverging nozzle. A unique forward light scattering technique was developed for droplet size distribution measurements. Droplet spatial variations were investigated using light transmission measurements, and droplet velocities were measured with a laser-Doppler velocimeter (LDV) system incorporating a confocal Fabry-Perot interferometer. Nozzle throat radius of curvature and height were varied to investigte their effects on droplet size. Droplet size distribution measurements yielded a nominal Sauter mean droplet diameter of 1.7 ..mu..m and a nominal mass-mean droplet diameter of 2.4 ..mu..m. Neither the throat radius of curvature nor the throat height were found to have a significant effect upon the nozzle exit droplet size. The light transmission and LDV measurement results confirmed both the droplet size measurements and demonstrated high spatial uniformity of the droplet phase within the nozzle jet flow. One-dimensional numerical calculations indicated that both the dynamic breakup (thermal equilibrium based on a critical Weber number of 6.0) and the boiling breakup (thermal nonequilibrium based on average droplet temperature) models predicted droplet diameters on the order of 7.5 ..mu..m, which are approximately equal to the maximum stable droplet diameters within the nozzle jet flow.

Research Organization:
California Univ., Livermore (USA). Lawrence Livermore Lab.
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
6665082
Report Number(s):
UCRL-52534
Country of Publication:
United States
Language:
English