skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theory of extragalactic radio sources

Journal Article · · Rev. Mod. Phys.; (United States)

Powerful extragalactic radio sources comprise two extended regions containing magnetic field and synchrotron-emitting relativistic electrons, each linked by a jet to a central compact radio source located in the nucleus of the associated galaxy. These jets are collimated streams of plasma that emerge from the nucleus in opposite directions, along which flow mass, momentum, energy, and magnetic flux. Methods of using the observations diagnostically to infer the pressures, densities, and fluid velocities within jets are explained. The jets terminate in the extended radio components, where they interact strongly with the surrounding medium through a combination of shock waves and instabilities. Jets may expand freely, be confined by external gas pressure, or be pinched by toroidal magnetic fields. Shear flows are known to be Kelvin-Helmholtz unstable and thus may be responsible for some of the observed oscillation of jets about their mean directions and for creating the turbulence and shock waves needed to accelerate the relativistic electrons. Larger-scale bending may be caused by changes in the jet axis within the nucleus, gravitational interaction of the radio galaxy with a companion galaxy, or rapid motion of the source through dense intergalactic gas. The compact radio sources also exhibit a jet morphology and contain more direct clues as to the origins of jets; in particular, the variations sometimes observed imply bulk flows that are relativistic. It is widely believed that nuclear activity is ultimately ascribable to gas accreting onto a massive black hole. The accretion can proceed in several different fashions, depending upon whether or not the gas has angular momentum and whether or not the radiation emitted is sufficiently intense to influence the dynamics of the flow. Several distinct mechanisms for jet production in the context of black holes have been proposed.

Research Organization:
Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards, Boulder, Colorado 80309 and Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, Colorado 80309
OSTI ID:
6663580
Journal Information:
Rev. Mod. Phys.; (United States), Vol. 56:2
Country of Publication:
United States
Language:
English