Lobe area in adiabatic Hamiltonian systems
- California Inst. of Tech., Pasadena, CA (USA) Los Alamos National Lab., NM (USA). Center for Nonlinear Studies
We establish as analytically computable formula, based on the adiabatic Melnikov function, for lobe area in one-degree-of-freedom Hamiltonian systems depending on a parameter which varies slowly in time. We illustrate this lobe area result on a slowly parametrically forced pendulum, a paradigm problem for adiabatic chaos. Our analysis unties the theory of action from classical mechanics with the theory of the adiabatic Melnikov function from the field of global bifurcation theory.
- Research Organization:
- Los Alamos National Lab., NM (USA)
- Sponsoring Organization:
- DOD; DOE/AD; NSF
- DOE Contract Number:
- W-7405-ENG-36
- OSTI ID:
- 6648916
- Report Number(s):
- LA-UR-90-2714; CONF-9005237--6; ON: DE90016566; CNN: DPP 8968
- Country of Publication:
- United States
- Language:
- English
Similar Records
Higher-order Melnikov theory for adiabatic systems
A geometric criterion for adiabatic chaos
Geometric adiabatic angle in anisotropic oscillators
Journal Article
·
Sat Nov 30 23:00:00 EST 1996
· Journal of Mathematical Physics
·
OSTI ID:397462
A geometric criterion for adiabatic chaos
Journal Article
·
Mon Feb 28 23:00:00 EST 1994
· Journal of Mathematical Physics (New York); (United States)
·
OSTI ID:5228843
Geometric adiabatic angle in anisotropic oscillators
Journal Article
·
Sun Nov 30 19:00:00 EST 2025
· American Journal of Physics
·
OSTI ID:3005612
Related Subjects
657002* -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
99 GENERAL AND MISCELLANEOUS
990200 -- Mathematics & Computers
ANALYTICAL SOLUTION
HAMILTONIANS
MATHEMATICAL OPERATORS
NONLINEAR PROBLEMS
ORBITS
PENDULUMS
QUANTUM OPERATORS
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
99 GENERAL AND MISCELLANEOUS
990200 -- Mathematics & Computers
ANALYTICAL SOLUTION
HAMILTONIANS
MATHEMATICAL OPERATORS
NONLINEAR PROBLEMS
ORBITS
PENDULUMS
QUANTUM OPERATORS