Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Lobe area in adiabatic Hamiltonian systems

Conference ·
;  [1]
  1. California Inst. of Tech., Pasadena, CA (USA) Los Alamos National Lab., NM (USA). Center for Nonlinear Studies
We establish as analytically computable formula, based on the adiabatic Melnikov function, for lobe area in one-degree-of-freedom Hamiltonian systems depending on a parameter which varies slowly in time. We illustrate this lobe area result on a slowly parametrically forced pendulum, a paradigm problem for adiabatic chaos. Our analysis unties the theory of action from classical mechanics with the theory of the adiabatic Melnikov function from the field of global bifurcation theory.
Research Organization:
Los Alamos National Lab., NM (USA)
Sponsoring Organization:
DOD; DOE/AD; NSF
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
6648916
Report Number(s):
LA-UR-90-2714; CONF-9005237--6; ON: DE90016566; CNN: DPP 8968
Country of Publication:
United States
Language:
English

Similar Records

Higher-order Melnikov theory for adiabatic systems
Journal Article · Sat Nov 30 23:00:00 EST 1996 · Journal of Mathematical Physics · OSTI ID:397462

A geometric criterion for adiabatic chaos
Journal Article · Mon Feb 28 23:00:00 EST 1994 · Journal of Mathematical Physics (New York); (United States) · OSTI ID:5228843

Geometric adiabatic angle in anisotropic oscillators
Journal Article · Sun Nov 30 19:00:00 EST 2025 · American Journal of Physics · OSTI ID:3005612